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A Sequential Bayesian Partitioning Approach
for Online Steady-State Detection

of Multivariate Systems
Jianguo Wu , Honglun Xu, Chen Zhang, and Yuan Yuan

Abstract— The steady-state detection is critically important in
many engineering fields, such as fault detection and diagnosis and
process monitoring and control. However, most of the existing
methods were designed for univariate signals and, thus, are
not effective in handling multivariate signals. In this paper,
we propose an efficient online steady-state detection method for
multivariate systems through a sequential Bayesian partitioning
approach. The signal is modeled by a Bayesian piecewise constant
mean and covariance model, and a recursive updating method
is developed to calculate the posterior distributions analytically.
The duration of the current segment is utilized for steady-state
testing. Insightful guidance is also provided for hyperparameter
selection. The effectiveness of the proposed method is demon-
strated through thorough numerical and real case studies.

Note to Practitioners—This paper addresses the problem of
online steady-state detection of systems captured by multivariate
signals. Existing approaches often monitor each signal inde-
pendently, and the system is claimed steady when all signals
reach steady state. These methods have many shortcomings,
such as failing to consider the correlations among signals and
suffering the multiple testing problems. In this paper, we propose
a novel joint monitoring approach, where the multivariate signal
is sequentially partitioned into segments of constant mean and
covariance through an online Bayesian inference scheme, and
once the current segment duration is sufficiently large, the signal
is considered steady. We also provide several insightful guidelines
to select appropriate hyperparameters under different scenarios.
The proposed approach is much more accurate and robust than
existing ones. However, this method may face prohibitive com-
putational cost and ill-posed covariance inversion problem when
there are hundreds or even thousands of variables in the system.
In future research, we will develop efficient distributed monitor-
ing and data fusion techniques to overcome these challenges.
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I. INTRODUCTION

DETECTING whether a system is operating under steady-
state condition is essential in process performance assess-

ment and optimization [1], [2], fault detection and diagnosis
[3], [4], and process automation and control [5]–[9]. It arises in
many engineering fields, such as process industries, chemical
engineering, and manufacturing process automation and con-
trol. In these applications, a steady-state condition is the basic
requirement for process modeling, evaluation, monitoring,
and control. In the discrete-event simulations [1], [10], for
example, the steady state is not achieved until sometime after
the system is started or initialized. The initial situation is often
referred to as transient state, startup or warm-up period. Only
the steady-state period data (e.g., throughput, work-in-process)
represent the true performance of the system and, thus, needs
to be identified for process assessment and optimization.
In process or chemical industries, it is often mandatory to
use steady-state data (e.g., flow rate, pH value, temperature,
and pressure) for process modeling and design, and real-time
optimization [6], [11]. In batch processes manufacturing [12],
the operation is often unsteady during the startup period due
to unstabilized material or machine conditions, which cannot
guarantee a satisfied product quality. To avoid costly quality
inspection and scrap costs, the steady-state operation needs to
be identified. In process automation and control, the steady
state can be used to trigger the next action. For example, in
ultrasonic cavitation-based nanoparticle dispersion process, the
particles are considered completely dispersed and the process
can be stopped when the cavitation noise signal enters into the
steady state [7]–[9].

In the past few decades, various types of univariate offline
methods have been developed for initial bias truncation in
discrete-event simulations [1], [10]. These methods often
require a sufficiently large number of steady-state observations
for warm-up truncation and, thus, are not applicable for online
detection. In contrast, there are a relatively small number of
online steady-state detection algorithms for univariate signals
in the existing literature, most of which can be classified into
the following categories.
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1) Regression-based approach [13] where a simple linear
regression is performed over a moving data window and
the fitted slope is monitored. Once the magnitude of
the slope is below a predefined threshold, the signal is
considered steady.

2) Performing a t-test on the difference of the means
of two adjacent moving windows. If the difference is
significantly small, the signal is claimed steady [14].

3) Performing an F-test [variance ratio test (VRT)] on the
ratio of two variances of a moving window calculated
using different methods, namely, the mean squared devi-
ation and the mean squared differences of successive
data [15]. In the steady-state period, the ratio is expected
to be near unity.

4) Monitoring the variance of a moving window [4].
When the variance is below a threshold, the signal is steady.

However, all the aforementioned online methods are devel-
oped for univariate signals. In practice, most of the sys-
tems or processes are inherently multivariate. With the rapid
development of sensing technology, multiple sensor signals
have become unprecedentedly available to better capture the
system conditions. Therefore, multivariate steady-state detec-
tion algorithms are highly desirable. To the best of our
knowledge, there are very limited methods for multivariate
signals. Brown and Rhinehart [16] proposed to monitor each
signal separately using an existing univariate steady-state
detection algorithm. Once all signals are steady, the process is
claimed to be steady. However, this strategy inevitably suffers
the notorious multiple testing problem [17] with inflated
type-II error or detection delay. In addition, it is incapable of
detecting the change of correlation among different variables.
Jiang et al [18] proposed to fuse the steady-state indices of
all variables into one through the Dempster’s rule of com-
bination [19]. This approach is nevertheless a generalization
of Brown and Rhinehart’s method [16] and, thus, shares the
same shortcomings. In addition, it requires sufficient historical
steady-state data to determine the testing threshold, which is
often unrealistic in practice due to the data unavailability and
run-to-run trajectory variations. Note that if sufficient historical
steady-state observations are available and follow the same
statistical distribution for all runs, a large number of existing
statistical process control (SPC) techniques [20] are readily
available for the steady-state detection, e.g., detecting the first
in-control sample. However, in the steady-state detection appli-
cations, the distribution of the steady-state data often varies
from run to run, due to known or unknown process conditions.
Therefore, the existing multivariate SPC techniques cannot
be directly used. Most of the other multivariate methods are
developed in the chemical batch processes [12], [21]. In these
methods, a dimension reduction technique is applied first, such
as the multiway principal component analysis [21], dynamic
principal component analysis [12], and then either a univariate
method is applied on a combined index or each extracted
feature is monitored individually. These methods also have
more or less the aforementioned disadvantages.

To overcome these disadvantages, this paper develops an
efficient online multivariate steady-state detection method
using a sequential Bayesian partitioning approach. In this

method, the multivariate signal is sequentially segmented
into phases of constant mean and covariance matrix under
the Bayesian framework, and the posterior distribution of the
phase duration is used to test the steady state. Once the
duration is sufficiently large, the signal is claimed steady.
The main challenges of this method are how to sequentially
find the change-point regarding the mean and covariance, and
how to select appropriate hyperparameters. To overcome these
challenges, we develop an efficient recursive method to cal-
culate the posterior distributions analytically and then provide
several insightful guidelines on hyperparameter selection.

The rest of this paper is organized as follows. In section II,
the steady-state detection problem is formulated into a piece-
wise constant modeling of multivariate signals. Section III
presents the technical details of online change-point detection,
computational cost reduction, and appropriate hyperparameter
selection. The numerical illustration, performance comparison,
and real case studies are provided in Section IV. Section V
presents our conclusion and discussion.

II. PIECEWISE CONSTANT MODELING OF MULTIVARIATE

SIGNALS FOR STEADY-STATE DETECTION

To detect whether a system is steady, it is necessary to
first define what steady state is. In mathematics or statistics,
an alternative term “stationary process,” is often used, which
is defined as a stochastic process xt whose joint probability
distribution p(xt , xt+1, . . . , xt+s) does not change over time t
(strict or strong stationarity). Consequently, the mean and vari-
ance or covariance parameters do not change over time. In this
paper, we define steady state as the condition where the mean
and covariance of signals capturing the system dynamics are
unchanging in a certain period. It is worth noting that in some
practical applications, such as the discrete-event simulations
and batch processes manufacturing, once steady state occurs,
it is expected not to change anymore. Therefore, the online
monitoring can be stopped once steady state is detected. How-
ever, in many other applications, e.g., monitoring temperature,
pressure, and pH value in process or chemical industries [6],
the transient state and steady state often occur alternatively,
due to unexpected system faults, disturbances, or closed-loop
control actions. Therefore, it requires the monitoring scheme
to be able to detect the occurrence of multiple steady states
and transient states.

Based on the definition, we propose to utilize a piecewise
constant model to fit the multivariate signals, where each
segment is modeled with a unique mean and covariance
matrix. Take two univariate signals for example (Fig. 1).
The segment duration would be very short in the transient
period, whereas it is expected to be long in the steady-
state period. In other words, the change-points between the
successive segments occur more frequently and continuously
in the transient period due to the rapid change of mean or
covariance. When the system is in the steady-state period,
there would be no change-points. In the online steady-state
detection, the segment duration can be used as a monitoring
statistic. Once it is sufficiently large, e.g., larger than a certain
threshold, the system is considered steady.
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Fig. 1. Illustration of piecewise constant modeling of nonlinear signals
with initial transient period. (a) Exponential function in the transient period.
(b) Oscillating function in the transient period.

Let the multivariate signal be X t , t = 1, 2, . . . , where X t

is a p-dimensionial vector. Suppose X t ∼ N(μt ,�t ) and
X t , t = 1, 2, . . . , are independent. Define �t = (μt ,�t ). Sup-
pose the change-points are at positions {c1, c2, . . . , ck, . . .},
where 0 < c1 < c2 < · · · < ck < · · · , then, the piecewise
constant model can be mathematically expressed as

�t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�(1), if c0 < t ≤ c1

�(2), if c1 < t ≤ c2

· · ·
�(k), if ck−1 < t ≤ ck

· · ·

(1)

where �(i) is the distribution parameter of the i th segment.
Based on the above discussion, any interval [ck−1, ck] with
length ck − ck−1 greater than a certain value, e.g., L0, can be
claimed as a steady-state period.

In the online steady-state detection, the testing is performed
each time a new observation is obtained. Therefore, the multi-
variate signal needs to be fitted sequentially using a piecewise
constant model, and the duration of the current segment has to
be estimated to decide if the current segment is long enough
to claim a steady state. Although the idea is simple, how to
efficiently estimate the latest change-point (i.e., the starting
time of the current segment) in a real-time manner is neverthe-
less very challenging. Online Bayesian updating is particularly
effective in the dynamic analysis of a sequence of data
with change-points [22]. In addition, it provides uncertainty
estimates in the number and locations of change-points, which
are more realistic in applications. Therefore, in this paper,
we propose to use a Bayesian approach, where a Bayesian
piecewise constant model is formulated, and then, the posterior
distribution of the latest change-point is calculated for the
steady-state detection. The technical details are provided in
Section III.

III. ONLINE BAYESIAN PIECEWISE CONSTANT MODEL

FITTING AND STEADY-STATE DETECTION

A. Bayesian Formation and Prior Specification

For a Bayesian piecewise constant model, appropriate priors
for the change-points, the mean, and covariance matrix of
each segment need to be assigned. For a time series of fixed
length, a joint prior can be specified for both the change-
point number k and positions [23], e.g., π(k, {δi}i=k+1

i=1 ) =
π(k)π({δi}i=k+1

i=1 |k) where δi is the duration of the i th segment.

However, this approach is not appropriate or straightforward
for dynamic sequences with an increasing length. Instead,
the prior is often specified by modeling the occurrence of
change-points through a Markov process, where the next
change-point only depends on the duration of the current
segment [22]. For example, a Poisson point process can be
assumed for the occurrence of the change-points or equiva-
lently an exponential distribution is assumed for the segment
durations. Another simple prior is the geometric prior applied
to the segment duration, which corresponds to a constant
Markov transition probability for the latest change-point at
each time step. In fact, the stochastic process approach indi-
rectly specifies a joint prior distribution for the number of
change-points and their positions [24]. The advantage of this
approach is that the prior transition probability of the latest
change-point can be easily calculated, which is convenient
for online change-point detection. Suppose the latest change-
point (the time index for the last observation of the previous
segment) at time step t is τt , then

P(τt = j |τt−1 = j ′)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − G(t − j ′)
1 − G(t − 1 − j ′)

, if j = j ′

G(t − j ′) − G(t − 1 − j ′)
1 − G(t − 1 − j ′)

, if j = t − 1

0, otherwise

(2)

where 0 ≤ j ≤ t − 1, G(·) is the cumulative distribution
function for the segment duration. The geometric distribution
is the most popular and simplest one for the segment duration
in sequential change-point inferences [22], [25]. Other priors
include Poisson distribution and gamma distribution, which are
often used in speech segmentation [26]. As observed in our
study, the detection is not very sensitive to the distribution
type. Therefore, we select the geometric distribution for the
segment duration for the purpose of simplicity. It is easy to
show that when a geometric distribution with parameter p0
is assumed for the segment duration δ, i.e., P(δ = l) =
(1 − p0)

l−1 p0, the prior transition probability is simply

P(τt = j |τt−1 = j ′) =

⎧⎪⎨
⎪⎩

1 − p0, if j = j ′

p0, if j = t − 1

0, otherwise.

(3)

As we can see, it specifies a constant prior Markov transition
probability for the latest change-point.

For the changing parameters �t = (μt ,�t ), a conjugate
prior is specified as follows for all segments:

p(μt ,�t ) = p(�t )p(μt |�t )

= InvWishp(�0, v0)N

(
μ0,

1

γ0
�t

)
(4)

where �t ∼ InvWishp(�0, v0) is a p-dimensional Inverse-
Wishart distribution with degrees of freedom v0 and scale
matrix �0, and μt |�t ∼ N(μ0, (1/γ0)�t ) is a p-dimensional
normal distribution. In addition, to facilitate online Bayesian
updating, we assume that the changing parameters are inde-
pendent across different segments. In Section II-B, we will
show that such prior is a conjugate prior and the posterior
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distribution of both the latest change-point and changing para-
meters, i.e., p(τt |X1:t ) and p(μt ,�t |X1:t , τt ), where X1:t =
{X1, X2, . . . , X t }, are analytically tractable.

B. Sequential Bayesian Change-Point Detection and
Steady-State Detection

As mentioned in Section II, the duration of the current
segment is a critical parameter to determine if the system
is steady. Therefore, it is essential to calculate the posterior
distribution of the segmental duration or equivalently the latest
change-point sequentially. In this section, the exact posterior
probability mass function (PMF) of the latest change-points
and the posterior density functions of the changing parameters
will be derived.

The posterior distribution can be expressed as

P(τt+1 = j |X1:t+1)

∝ p(τt+1 = j, X t+1|X1:t )
= P(τt+1 = j |X1:t )p(X t+1|X1:t , τt+1 = j) (5)

where j = 0, 1, . . . , t is the observation index. The predictive
PMF of the latest change-point in (5) can be calculated by

P(τt+1 = j|X1:t )

=
min ( j,t−1)∑

i=0

P(τt+1 = j |τi = i)P(τt = i |X1:t ). (6)

Based on (3), (6) can be further simplified as

P(τt+1 = j|X1:t ) =
{

p0, j = t

P(τt = j |X1:t )(1−p0), j ≤ t − 1

(7)

The predictive density function p(X t+1|X1:t , τt+1 = j) in (5)
can be expressed as

p(X t+1|X1:t , τt+1 = j)

=
{

p(X t+1|X j+1:t , τt+1 = j), j ≤ t − 1

p(X t+1), j = t .
(8)

Therefore, (5), (7), and (8) can be summarized as

P(τt+1 = j|X1:t+1)

∝

⎧⎪⎨
⎪⎩

p0 p(X t+1), j = t

(1 − p0)P(τt = j |X1:t )
×p(X t+1|X j+1:t , τt+1 = j), j ≤ t − 1.

(9)

Let P(t+1)
j = P(τt+1 = j |X1:t+1) and p j+1,t =

p(X t+1|X j+1:t , τt+1 = j), and then, (5), (7), and (8) can be
summarized using a state transition equation (10), as shown
at the bottom of this page.

The matrix in (10) can be considered as a posterior transition
matrix. It is the only term involving the newest observation
Xt+1 and, thus, is essential in updating the posterior PMF of
the latest change-point. From (10), we can see that if (8),
or equivalently the posterior transition matrix, is tractable,
the posterior PMF can be recursively calculated based on the
posterior PMF obtained at the previous time step. Therefore,
the calculation of (8) is critical for sequential change-point
detection.

To get the analytical form of p(Xt+1|X1:t , τt+1 = j),
we first derive the posterior p(μt ,�t |X1:t , τt ), which is pro-
vided in Theorem 1.

Theorem 1: Suppose the joint prior for μt and �t is
specified as �t ∼ InvWishp(�0, v0) and μt |�t ∼ N(μ0,
(1/γ0)�t ), then, the posterior p(μt ,�t |X1:t , τt ) can be
derived as

(�t |X1:t , τt ) ∼ InvWishp
(
�∗

τt+1,t , v
∗
τt +1,t

)
(μt |�t , X1:t , τt ) ∼ N

(
μ∗

τt +1,t ,�t/γ
∗
τt +1,t

)
(11)

where

v∗
τt +1,t = (t − τt ) + v0, γ ∗

τt+1,t = γ0 + (t − τt )

μ∗
τt +1,t = (t − τt )X̄τt +1,t + γ0μ0

γ0+(t − τt )

�∗
τt +1,t = �0 + (t − τt )Sτt +1,t

+ (t − τt )γ0

(t− τt )+γ0
(X̄τt +1,t −μ0)(X̄τt +1,t − μ0)

′ (12)

where X̄τt +1,t and Sτt +1,t are the mean and variance of the
observations Xτt +1:t calculated as

X̄τt +1,t = 1

t − τt

t∑
i=τt +1

X i ,

Sτt +1,t = 1

t − τt

t∑
i=τt +1

(X i − X̄τt +1,t )(X i − X̄τt +1,t )
′.

The proof is given in Appendix A. Based on Theorem 1, the
predictive density p(X t+1|X1:t , τt+1 = j) can be derived as
follows.

Theorem 2: For τt+1 < t

(X t+1|X1:t , τt+1)

∼ t

(
d∗
τt+1+1,t ,μ

∗
τt+1+1,t ,

(
γ ∗
τt+1+1,t + 1

)
�∗

τt+1+1,t

γ ∗
τt+1+1,t d

∗
τt+1+1,t

)
. (13)

For τt+1 = t

(X t+1|X1:t , τt+1 = t) ∼ t

(
v0 − p + 1,μ0,

(γ0 + 1)�0

γ0(v0 − p + 1)

)
(14)

[
P(t+1)

0 , P(t+1)
1 , . . . , P(t+1)

t
] ∝ [P(t)

0 , P(t)
1 , . . . , P(t)

t−1

]×
⎡
⎢⎢⎢⎣

(1 − p0)p1,t 0 · · · 0 p0 · p(X t+1)
0 (1 − p0)p2,t · · · 0 p0 · p(X t+1)
...

...
. . .

...
...

0 0 · · · (1 − p0)pt,t p0 · p(X t+1)

⎤
⎥⎥⎥⎦
(10)
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where d∗
τt+1+1,t = v∗

τt+1+1,t − p + 1 is the degree of freedom,
and the other two arguments are the mean and shape matrix
of the p-dimensional multivariate t distribution, respectively.
The proof is provided in Appendix B.

After the posterior PMF of the latest change-point is
updated, the distribution of the duration of the current segment
can be easily obtained to test if the multivariate signal is
steady. Specifically, we define a probability index Pt , which is
the posterior probability of the current segment being longer
than a threshold L0

Pt = P(t − τt ≥ L0|X1:t ) = P(τt ≤ t − L0|X1:t )=
t−L0∑
i=0

P(t)
i .

(15)

Once Pt is larger than a threshold α, the signal is claimed to
be steady. It is intuitive that L0 directly influences the detection
timeliness and false alarm rate (FAR) or misclassification
rate, i.e., the probability of signaling a steady-state alarm in
transient state. It may be determined based on engineering
knowledge or process requirement. However, in most of the
practical applications, the steady state needs to be detected
as early as possible, yet without causing the FAR to exceed
a certain level. Therefore, L0 can be treated as a tuning
parameter to make tradeoff between the detection delay and
FAR. For α, since the probability index often increases rapidly
to a value close to 1 (see Section IV-A for details), we simply
set it to 0.9 and do not treat it as a tuning parameter.

C. Controlling the Computational Cost

From Section II, we know that the posterior distribution of
the latest change-point can be calculated analytically. How-
ever, the computational and memory cost of each time step
increase almost linearly with time t , as can be seen from (10).
At time t , we need to calculate the posterior PMF
P(τt = j |X1:t ) at t positions, i.e., j = 0, 1, . . . , t − 1. For a
long multivariate signal, the computational cost may become
very prohibitive for online applications and, thus, needs to be
controlled.

As observed in applications, the posterior PMF often con-
centrates around a small region and is almost zero at all other
positions, especially those far before the latest change-point.
Therefore, a natural way to control the computational cost
is to approximate the posterior PMF using a fixed-support-
size strategy, where a fixed number of positions with high
probabilities are selected to calculate the posterior PMF and set
the posterior PMF at other locations to 0. Specifically, suppose
the support size is m, then, at time t ≥ m+1, P(τt = j |X1:t ) is
calculated at the m positions selected at the previous time step
along with the position j = t −1. Therefore, there are in total
m + 1 positions to update the posterior PMF P(τt = j |X1:t ).
After the m + 1 probabilities are calculated, we randomly
select m positions using weighted sampling without replace-
ment to approximate P(τt = j |X1:t ). The weight for each
location in the random sampling is simply its posterior PMF.
Note that from (9), we can see that if P(τt = j|X1:t ) = 0,
then P(τt+1 = j |X1:t+1) = 0, therefore, we only need to
calculate the posterior PMF at the m positions selected at the

previous time step and the new position j = t − 1. Using
this fixed-support-size strategy, the computational cost can be
effectively controlled and balanced without influencing much
of the detection accuracy.

D. Hyperparameter Selection

The choice of hyperparameters is often crucial in Bayesian
data analysis when the sample size is limited. In our online
application, the change-point needs to be detected in a timely
manner, e.g., detecting the occurrence of a new change-point
with only a few observations in the new segment, yet without
resulting in overfitting or excessive change-points. There-
fore, the hyperparameters need to be selected appropriately.
In Bayesian inference, if a sufficient amount of historical
data is available, informative priors are more preferable and
could be estimated through these data. However, in many
applications, historical data are very limited. In addition,
in our case, to simplify the problem, we assume that all
segments of different characteristics (in terms of duration,
noise, and amplitude) are independent and share the same
hyperparameters. As a result, it may be unrealistic to obtain
a set of hyperparameters that is informative for all segments.
In this section, we provide some guidelines and heuristics for
hyperparameter selection.

Recall that the priors are �t ∼ InvWishp(�0, v0), μt |�t ∼
N(μ0,�t/γ0), and the prior transition probability given in (3).
Therefore, the hyperparameters include p0, v0,�0, γ0, and μ0.
Similar to the proof of Theorems 1 and 2, we can get the prior
distribution of μt by integrating out �t as

μt ∼ t (v0 − p + 1,μ0,�0/[(v0 − p + 1)γ0]). (16)

As observed in the numerical and real case studies,
the detection results are not sensitive to the prior transi-
tion probability p0. Any values in the interval [0.05, 0.2]
works quite well. For the covariance prior InvWishp(�0, v0),
the mean value is E(�t ) = �0/(v0 − p − 1) for v0 >
p + 1. Based on the mean and covariance of �t [27], we can
see that v0 directly controls the noise level. The larger the
value is, the smaller the noise level of the prior, and, thus,
the more sensitive the change-point detection will be or the
more change-points it will result in. In other words, if the prior
noise level is much larger than the actual one, the algorithm
may not be able to detect the mean-shift timely, as the shift
is masked by the large noise specified by the prior. On the
other hand, if the prior noise level is too low, an overfitting
issue may occur, i.e., too many change-points are produced.
To select �0 and v0 appropriately, several scenarios are
considered.

1) The noise covariance is constant in the whole process
and some historical data are available. We could calcu-
late the sample covariance matrix S using the steady-
state data and then select a very large v0 and set
�0 = v0 S. Based on Theorem 1, as v0 → ∞,
(�t |X1:t , τt ) → S. Therefore, the problem degener-
ates to a piecewise constant model with fixed covari-
ance �t (only mean-shift), which could significantly
reduce the uncertainty and thus improve the detection
accuracy.
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2) No prior information is available but the noise level is
roughly known (e.g., within certain range). In this case,
for simplicity, we can roughly set �0 = I p and select
v0 accordingly to match the noise level.

3) The prior information is not available, yet we want
our algorithm to be robust enough to handle signals
with significantly different noise levels. In such case,
selecting an appropriate set of hyperparameters is not
easy. In addition, using a single set of hyperparameters
may be too restrictive and cannot handle all signals.
To solve this problem, we propose to use an adaptive
prior approach, where the covariance prior is dynami-
cally updated or learned from the data in the monitoring
process. More specifically, based on (11) we can get

E(�t |X1:t ) =
t−1∑
j=0

E(�t |X1:t , τt = j)P(τt = j |X1:t )

=
t−1∑
j=0

�∗
τt +1,t

v∗
τt +1,t − p + 1

P(τt = j |X1:t ). (17)

At time step t + 1, we set �t+1 ∼ InvWishp(�
(t+1)
0 , v0)

where

�
(t+1)
0 = (v0 − p − 1)E(�t |X1:t ). (18)

It is easy to show that E(�t+1) = E(�t |X1:t ), which is
often more informative than arbitrarily specified priors. This
strategy is particularly effective for signals with only mean
shift.

For the mean prior μt |�t ∼ N(μ0,�t/γ0) or (16), since
different segments may have different means along the multi-
variate trajectories, a noninformative prior or a “flat” prior is
recommended to reduce the influence of priors and let the data
“speak” for themselves. To make the prior noninformative,
we could roughly select a μ0 (e.g., 0) based on the order of the
signal magnitude and then select a very small positive value for
γ0. From (11) we can see that as γ0 → 0,μ∗

τt +1,t → X̄τt +1,t

and (μt |�t , X1:t , τt ) ∼ N(X̄τt +1,t ,�t/(t − τt )), which does
not involve μ0.

IV. NUMERICAL STUDIES FOR ILLUSTRATION

AND COMPARISON

In this section, we use numerical studies to illustrate the
sequential change-point and steady-state detection process,
and compare our method with several existing approaches.
To simulate signals with initial bias in the comparison, we use
four types of bias functions as signal means, namely, the linear,
quadratic, exponential, and oscillating functions, which are
commonly used in testing initial bias elimination heuristics
[10]. The bias functions and their shapes are shown in Table I.

A. Illustration

To illustrate the detection process and also show its robust-
ness, we use four types of signals with different characteristics
in terms of the change of mean and covariance matrix:
1) continuous mean and constant covariance; 2) abrupt mean
shift and constant covariance; 3) constant mean and abrupt

TABLE I

BIAS FUNCTIONS AND THEIR SHAPES

Fig. 2. Illustration of the sequential change-point detection and steady-state
detection process. (a) Continuous mean and constant covariance. (b) Abrupt
mean shift and constant covariance. (c) Constant mean and abrupt variance
change. (d) Constant mean and abrupt correlation change.

variance change; and 4) constant mean and abrupt correlation
change, as shown in Fig. 2.

For display convenience, we only consider bivariate signals
(i.e., p = 2) in the illustration. For the signal with continuous
mean and constant covariance [Fig. 2(a)], the first dimension
x1 is an exponential signal, while the second dimension x2
is an oscillating signal. The signal parameter is set as H =
1, T0 = 200, f = 30, and � = σ 2 I2 where σ = 0.1. For
the signal with abrupt mean shift and constant covariance
[Fig. 2(b)], the covariance is � = σ 2 I2, the mean for
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Fig. 3. Performance of adaptive prior in the steady-state detection process. (a) �0 = I2, v0 = 100, no dynamic updating. (b) �0 = I2, v0 = 4, no dynamic
updating. (c) �0 = I2, v0 = 4, dynamic updating.

x1 is set to 0, 0.8, 0.5, and 0.2 within the time intervals
(0, 100), (100, 200), (200, 300), and (300, 400), respectively,
and the mean for x2 is set to 0.2, 0.5, and 0 within (0, 150),
(150, 300), and (300, 400), respectively. For the signal with
constant mean and abrupt variance change [Fig. 2(c)], μ = 0
and � = diag(σ 2

1 , σ 2
2 ), where σ1 = 0.3, 1, and 0.3 in the time

intervals (0, 100), (100, 300), and (300, 400), respectively,
and σ2 = 0.3, 1, and 0.3 in the time intervals (0, 150), (150,
300), and (300, 400), respectively. For the case with constant
mean and abrupt correlation change [Fig. 2(d)], μ = 0 and

� = σ 2
[

1 ρ
ρ 1

]
, where σ 2 = 1, ρ = 0.9 for t ∈ (0, 200) and

ρ = 0.6 for t ∈ (200, 400). The hyperparamters are set to
μ0 = 0,�0 = I2, p0 = 0.1, and γ0 = 0.01 for all cases.
For the hyperparameter v0, which is critical to control the
prior noise level, we set it to 100 for Fig. 2(a) and (b), and 2
for Fig. 2(c) and (d). The duration threshold L0 = 30 and
probability threshold α = 0.9.

In Fig. 2, the vertical dashed lines denote the true steady-
state time. The dashed lines among the observations are
the estimated means E(μt |X1:t ) for the posterior distribution
μt |X1:t . Similar to (16), we can prove that

(μt |X1:t , τt ) ∼ t

(
d∗
τt+1,t ,μ

∗
τt +1,t ,

�∗
τt +1,t

γ ∗
τt+1,t d

∗
τt +1,t

)
.

Therefore

E(μt |X1:t ) =
τt =t−1∑
τt=0

μ∗
τt+1,t P(τt |X1:t ).

Clearly, the estimated means are very close to true values,
indicating that the proposed method can effectively fit the
signal sequentially through Bayesian inference. The third row
of Fig. 2(a)–(d) shows the expected duration of the current
segment, i.e., E(t − τt ), which is used to demonstrate the
change-point detection. The sharp decrease in the duration
indicates a newly detected change-point. As we can see,
the detection is very accurate and timely. The last row of

Fig. 2(a)–(d) shows the probability index for the steady-state
detection. Recall that the probability index is defined as the
probability of the duration of current segment larger than that
of the threshold L0. We can see that the index often increases
rapidly from a near-zero value to a value close to 1. Therefore,
we simply select the probability threshold α = 0.9 and do not
treat it as a tuning parameter.

To show the effectiveness of the adaptive prior with dynamic
updating strategy, we choose a signal with the same parameters
as Fig. 2(a). As shown in Fig. 3, three cases are considered:
1) covariance prior with an appropriate noise level and with-
out dynamic updating; 2) covariance prior with an exces-
sively large noise level and without dynamic updating; and
3) covariance prior with an excessively large noise level but
with dynamic updating. From Fig. 3(b), we can clearly see
that if the prior noise level is too high, the algorithm is
not able to timely detect the change-points, resulting in poor
model fitting and steady-state detection. However, as shown
in Fig. 3(c), if we use dynamic updating strategy to “correct”
the prior, the model fitting and steady-state detection become
much more accurate, even if the initial prior is specified
inappropriately.

B. Performance Comparison With Other Methods
In this section, the performance of the proposed method is

evaluated and compared with existing methods. In SPC area,
two types of performance measures are often used, the α-error
and the β-error (or detection delay). Usually, the α-error is
specified at a desired level (e.g., 0.05) and the corresponding
β-error is used as an evaluation metric to compare different
control charts. However, this comparison scheme is not
appropriate for the steady-state detection, as the α-error does
not make any sense for non-i.i.d. (independent and identically
distributed) samples in the transient period. Instead, another
evaluation metric, namely, the FAR may be used, which
is defined in our case as the probability of signaling a
steady-state alarm in the transient period. Nevertheless, this
metric still has shortcoming, in that, it does not capture the
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TABLE II

FOUR NOISE TYPES

closeness of the false alarm time to the true steady-state time.
In fact, the closeness of the alarm time in the transient period
to the true steady state is very important as it directly reflects
the amount of initial bias undetected or the remaining time
needed to reach steady state. Naturally, we could use the
closeness measure to evaluate the performance. Considering
the fact that the detection delay is often better than false alarm
with the same closeness, we use another metric, the weighted
standard error (WSE) [8], defined as

WSE =
√√√√ 1

N

N∑
i=1

w(T̂i )(T̂i − Ti0)2 (19)

where T̂i is the detected time, Ti0 is the true steady-state
time, N is the total number of multivariate signals, and w(·)
is the penalty weight ratio of detection delay over false alarm
given as

w(T̂i ) =
{

w ∈ (0, 1], if T̂i ≥ Ti0

1, otherwise.
(20)

Note that if w = 1, only the closeness is considered in
performance assessment. In the comparison, p = 4 is selected
and each dimension is simulated by a bias function, which is
randomly selected from Table I to cover various initial bias.
To further diversify the initial bias severity, different H, T0,
and noise levels are specified. Specifically, H = 1 and 2,
T0 = 200, 300. The length of the signal is set as T = 500.
To test the robustness of the algorithm under different noise
types, four scenarios are considered: 1) no auto-correlation and
no correlation among variables, denoted by AR(0); 2) first-
order auto-correlation and no correlation, denoted by AR(1);
3) second-order auto-correlation and no correlation, denoted
by AR(2); and 4) no auto-correlation and with correlation
among variables, denoted by CR. The noise types and their
parameters are shown in Table II.

For each type of signal, three noise levels are consid-
ered. For AR(0) and CR, σ = 0.06, 0.1, 0.14. For CR,
the correlation matrix Cr is randomly generated through vines
method [28]. In the simulation, each signal is replicated 100
times, so that a total of 1200 signals (2H × 2T0 × 3σ × 100)
are generated for each of the four noise types.

The proposed sequential Bayesian partitioning (SBP)
method is compared with three existing methods. The first
method is the exponentially weighted moving average-based
variance ratio test (VRT) [16], where each dimension is
monitored separately using the well-known method by Cao
and Rhinehart [6], and the steady state is claimed once all

dimensions reach steady state. The second method is the
steady state detection (SSD) algorithm [29], which employs a
moving window and tests if there is any nonstationary drift
within that window. The third one is a wavelet transform
(WT)-based method [18], where the status index for each
dimension is combined using the Dempster’s combination rule
to form a global detection index.

The hyperparamters for SBP are set and fixed as μ0 = 0,
�0 = I2, v0 = 100, p0 = 0.1, and γ0 = 0.01 for all
cases. The duration threshold L0 is selected by optimizing
the overall WSE under each noise type and weight w. For all
the other three methods, the detection parameters are chosen
by optimizing the overall WSE under each noise type and
weight w. Note that in practical applications, the true steady-
state times of the training data may be unknown or there may
even not be sufficient training data. For the former case, some
offline method could be used as a benchmark to estimate the
steady-state times, and then, the estimated values can be used
to evaluate WSE. For the latter case, we could use Monte Carlo
simulation to generate a training database covering various
initial bias conditions of different characteristics, e.g., noise
level and changing rate to select an optimal L0.

Fig. 4 shows the WSE and FAR of the four detection
methods as functions of w under different noise types. It is
worth noting that here the FAR is used only as an auxiliary
metric to show the detection details. Clearly, the proposed
SBP outperforms VRT, SSD, and WT methods significantly
in terms of WSE. The FAR of SBP is also much lower than
other three methods, indicating that if we reduce the FAR of all
other methods to the same level as SBP, the WSE will become
worse. For WT, the WSE does not change when w varies. The
reason is that FAR is above 0.9 for all cases. Based on (20),
the WSE will not change much when w varies. Note that the
hyperparameters of the SBP are selected using only several
trials under the guidelines of the hyperparameter selection in
Section III-D. The performance could be further improved if
these parameters are optimized.

Table III shows the detailed detection for each type of
signal with noise AR(0) and penalty weight ratio w ≡ 1
(only consider closeness). Due to space limitation, the detailed
results for other noise types and penalty weight ratios are not
provided here. We can see that SBP is much more robust
in handling signals of various noise levels and initial bias
severity. Bear in mind that SSD and WT are moving window-
based methods and, thus, are not robust. Too long a moving
window may delay the detection, while too short a moving
window may result in large FAR. As shown in Table III, all
the three methods could not uniformly perform well across
all types of signals. The proposed SBP method incorporates
the sequential Bayesian inference scheme and, thus, could
online “learn” the monitoring signal, which could significantly
improve its robustness.

V. REAL CASE STUDIES

In this section, we apply the proposed method to two
real cases to demonstrate its effectiveness: the Tennessee
Eastman (TE) process [30] and a serial production line with
perishable products [31].
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Fig. 4. WSE and FAR of SBP, VAR, SSD, and WT as functions of penalty weight ratio for different noise types. (a)–(e) AR(0). (b)–(f) AR(1). (e)–(g)
AR(2). (d)–(h) CR.

TABLE III

COMPARISON OF SBP, VRT, SSD, AND WT FOR w = 1. THE DETECTION
PARAMETERS ARE (1) SBP, L0 = 50; (2) VRT, λ1 = 0.05,

λ2 = λ3 = 0.2, THRESHOLD = 0.8; (3) SSD, WINDOW

SIZE = 24; AND (4) WT, �t = 20

A. Tennessee Eastman Process

The TE process is based on a simulation of a realistic chem-
ical plant. It has been widely used as a benchmark process
in the process monitoring community to test various fault
detection, identification, diagnosis, and closed-loop control
methodologies [32]. As shown in Fig. 5, the process consists
of five major units: a reactor, condenser, compressor, separator,
and stripper, and it contains eight chemical components: A, B,
C, D, E, F, G, and H, where A, C, D, and E are the reactants,
B is the inert gas, G and H are the products, and F is the
byproduct. For the detailed process description, please refer
to [30] and [32].

The process contains in total 53 measurement variables
(see [30], [32] for details), out of which 41 are the process
variables, i.e., XMEAS(1)–XMEAS(41), and 12 manipulated
variables, i.e., XMV(1)–XMV(12). A total of 21 process faults
are preprogrammed, i.e., IDV(1)–IDV(21), including A/C feed
ratio step change, B composition step change, and D feed
temperature step change. Here, we only consider Fault 1.
When Fault 1 occurs at time step 160 (8 h), a step changed is
induced for the A/C feed ratio, which results in a decrease in
A feed in Stream 5 and control loop reacts to increase the A
feed in Stream 1. After a certain amount of time, the A feed
becomes steady in Stream 6. Fig. 6 shows the dynamic change
of A feed in Stream 1 and Composition of A in Stream 6 once
Fault 1 occurs.

To monitor the steady state of the whole system, we utilize
all the 41 measurement variables. Since the historical data
of all these variables under the normal operating condition
are available or can be easily generated, we use these data
to roughly estimate the hyperparameters μ0 and �0. Suppose
the mean and sample covariance of these normal data are X̄
and S, respectively. Then, we select μ0 = X̄ , v0 = 1 × 106,
and �0 = v0 S. Other parameters are set as p = 0.1, γ0 =
1 × 10−4, and L0 = 60.

Fig. 7 shows the signal segmentation and steady-state detec-
tion results. Note that for space limitation, here, we only show
the first six process variables, from XMEAS(1)–XMEAS(6).
Fig. 7(g) shows the histogram of the simulated change-
points. They are simulated in this way: 1) randomly draw
a sample τT from P(τT |X1:T ) and then randomly draw ττT

from P(ττT |X1:τT ), continue this process until we reach the
beginning of the signal and 2) repeat the whole process
1000 times.

As we can see, the proposed method can accurately detect
the onset of Fault 1 and can effectively partition the whole
multivariate system into transient period and steady-state
period. The detected onset time of Fault 1 is 166, which is very
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Fig. 5. TE process.

Fig. 6. Feed in Stream 1 and Composition of A in Stream 6 under
normal operating condition and Fault 1. (a) Feed under normal operating
condition [XMEAS(1)]. (b) Composition under normal operating condition
[XMEAS(23)]. (c) Feed under Fault 1 [XMEAS(1)]. (d) Composition under
Fault 1 [XMEAS(23)]. The vertical dashed lines denote the onset of Fault 1.

close to the true onset time 160. Since we know the true onset
time, we use it to compare the detection accuracy between the
proposed method and SSD, VRT, and WT methods. The opti-
mal detection parameters that minimize the detection error are:
1) VRT: λ1 = 0.1, λ2 = λ3 = 0.2, and threshold = 1.7;
2) SSD: window size = 15; and 3) WT: �t = 7. The
detection results are 139, 135, and 237 for VRT, SSD, and
WT, respectively. We can see that the proposed SBP method
is much more accurate. It is worth noting that in the other three
methods, we need to build up to 41 monitoring charts, which
are very time consuming, let alone the detection accuracy after
fusing all detection results.

B. Serial Production Lines With Perishable Products
The perishable products refer to those having maximum

allowable waiting time, exceeding which the item will be

scrapped due to quality deterioration. Typical examples
include yogurt and battery production [31]. Due to dynamic
changes and frequent disruptions in the manufacturing process,
and product perishability, the production system often oper-
ates partially or even entirely in the transient regime. After
the production system is initiated, it needs some time
(warm-up period) for the production to reach steady state,
e.g., production rate and scrap rate. To facilitate process mon-
itoring and real time control policy optimization, it is essential
to detect when the production system reaches steady state.

Suppose there is a serial production with two Bernoulli
reliability machines, m1 and m2, a finite buffer B1 and
perishable products, as shown in Fig. 8.

The performance measures that are of interest and are used
to describe the system state include the following.

1) The production rate PR(t), which is the average number
of parts producted by machine m2 in the tth cycle.

2) The consumption rate CR(t), which is the average
number of parts consumed by machine m1 in the tth
cycle.

3) Scrap rate SR(t), i.e., the expected number of scrapped
parts in the t th cycle.

4) The work-in-process WIP(t), which is the average num-
ber of parts in buffer B1 at the end of the tth cycle.

For the detailed description of the data set, please refer to [31]
and [33].

The 4-D signal and detection results are shown in Fig. 9.
All the other detection parameters are set using the same way
as Fig. 7, except that μ0 = 0 and L0 = 20 are set here.
To evaluate the detection accuracy, we use an offline method,
namely, the adaptive minimal confidence region rule (AMCR),
as a benchmark. AMCR determines the steady-state starting
time by minimizing the confidence region of the mean estimate
using all the observations since that time [33]. The detected
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Fig. 7. Steady-state detection of the TE process under Fault 1 with
41 measurements (only the first 6 measures are shown here). (a)–(f)
XMEAS(1)–XMEAS(6). (g) Histogram of change-points. (h) Mean duration
of the current segment E(t −τt ). (i) Probability index Pt . The vertical dashed
lines denote the onset of Fault 1.

Fig. 8. Bernoulli line with perishable products.

steady-state starting time using the proposed online method
is 37, which is very close to the AMCR detected time 35.
In comparison, the VRT, SSD, and WT detected times are 38,
40, and 30, respectively. The corresponding optimal detection
parameters are λ1 = λ2 = λ3 = 0.5 and Thereshold = 1 for
VRT, window size = 5 for SSD, and �t = 12 for WT. We can
see that the proposed SBP approach is still better than the other
three methods. Note that the advantage of the proposed method

Fig. 9. Steady-state detection of the Bernoulli line of two machines. The
histogram of the change-points, the mean duration of the current segment,
and the probability index Pt , respectively (bottom). The vertical dashed line
denotes the detected steady-state time.

is that it is much more robust in handling various signals
of different characteristics using only one set of detection
parameters. For one multivariate signal, the advantage may
not be obvious, as other methods can always find a set of
detection parameters that work well on that specific signal.

VI. CONCLUSION AND DISCUSSION

In this paper, an efficient online steady-state detection
method has been developed for multivariate systems through
a sequential Bayesian partitioning approach. In this approach,
multivariate signals are modeled by piecewise constant mod-
els, where the mean and covariance are constant in each
segment, and then, the duration of each segment is utilized to
determine if the signal is steady. To facilitate online inference,
a Bayesian formulation of the piecewise constant model is
proposed. By using conjugate priors, it is found that the pos-
terior distributions of the latest change-points can be calculated
analytically through a recursive updating approach. Once the
posterior probability of the duration is larger than a predefined
threshold, the signal is considered steady. To control and
balance the computational cost, a fixed-support-size strategy
is proposed to approximate the posterior PMF of the latest
change-points. The role and sensitivity of hyperparameters are
discussed and several guidelines are provided to help select
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hyperparameters appropriately. Thorough simulation and real
case studies have demonstrated that the proposed method
can timely detect the change-points and effectively partition
the multivariate signal sequentially. The comparison results
show that the proposed method is much more accurate and
robust than existing methods in tackling signals of various
characteristics.

On the other hand, we need to point out that although our
approach can handle signals with mild autoregressive noise,
due to its Gaussian noise assumption, it may not be able to
detect the steady state accurately when the autocorrelation is
very severe. In addition, in this paper, we assume that all
the dimensions of the multivariate signal reach steady state
at the same time. In practice, however, some dimensions
may reach steady state earlier than the other ones, which
will influence the detection performance. We will leave these
problems in our future investigation. Last but not least, with
the recent advances in sensing and information technology,
we are more and more faced with the problem of monitoring
up to hundreds or even thousands of process variables. In such
cases, the proposed method may face severe challenges, e.g.,
prohibitive computational cost for online application and ill-
posed covariance inversion. To overcome these challenges,
data fusion and distributed monitoring techniques may be
needed, which will be investigated in near future.

APPENDIX A
PROOF OF THEOREM 1

Based on the definition of change-point, μt = μt−1 = . . . =
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t−τt +1

2

× exp

[
−1

2

((
μt − μ∗

τt +1,t

)′ ( �t

γ0 + t − τt

)−1

×(μt − μ∗
τt+1,t

)− (γ0 + t − τt )
(
μ∗

τt +1,t

)′
�−1

t

×μ∗
τt +1,t + γ0μ

′
0�tμ0 +

t∑
i=τt +1

X ′
i�

−1
t X i

⎞
⎠
⎤
⎦ dμt

∝ |�t |−
v0+p+t−τ t +1

2

× exp

[
−1

2
tr

(
�0 + (t − τt )Sτt +1,t + (t − τt )γ0

t − τt + γ0

×(X̄τt +1,t − μ0)(X̄τt +1,t − μ0)
′
)

�−1
t

]

where

X̄τt +1,t = 1

t − τt

t∑
i=τt +1

X i , Sτt +1,t

= 1

t − τt

t∑
i=τt +1

(X i − X̄τt +1,t )(X i − X̄τt +1,t )
′.

Therefore

(�t |X1:t , τt ) ∼ InvWishp
(
�∗

τt +1,t , v
∗
τt +1,t

)
where

�∗
τt +1,t = �0 + (t − τt )Sτt +1,t

+ (t − τt )γ0

t − τt + γ0
(X̄τt +1,t − μ0)(X̄τt +1,t − μ0)

′

v∗
τt +1,t = (t − τt ) + v0.

APPENDIX B
PROOF OF THEOREM 2

If τt+1 < t , then, τt+1 = τt ,μt+1 = μt = . . . =
μτt+1+1,�t+1 = �t = . . . = �τt+1+1. For notational
convenience, let μ = μt+1 = . . . = μτt+1+1,� = �t+1 =
�t = . . . = �τt+1+1.
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f (X t+1|X1:t , τt+1)

=
∫

f (X t+1|X1:t , τt+1,�) f (�|X1:t , τt+1)d�

∝
∫ ∣∣∣∣∣
(

1

γ ∗
τt+1+1,t

+ 1

)
�

∣∣∣∣∣
− 1

2

× exp

⎡
⎢⎢⎢⎣−

(
X t+1 − μ∗

τt+1+1,t

)′ [( 1
γ ∗
τt+1+1,t

+ 1

)
�

]−1 (
X t+1 − μ∗

τt+1+1,t

)
2

⎤
⎥⎥⎥⎦

×∣∣�∗
τt+1+1,t

∣∣ v∗
τt+1+1,t

2 |�|−
v∗
τt+1+1,t +p+1

2 exp

[
−1

2
tr
(
�∗

τt+1+1,t�
−1
)]

d�

∝
∫

|�|−
v∗
τt+1+1,t +p+2

2 exp

[
−1

2
tr

((
�∗

τt+1+1,t + γ ∗
τt+1,t

γ ∗
τt+1+1,t + 1

(
X t+1 − μ∗

τt+1+1,t

)(
X t+1 − μ∗

τt+1+1,t

)′)
�−1

)]
d�

∝
∣∣∣∣∣�∗

τt+1+1,t + γ ∗
τt+1,t

γ ∗
τt+1+1,t + 1

(
X t+1 − μ∗

τt+1+1,t

)(
X t+1 − μ∗

τt+1+1,t

)′∣∣∣∣∣
−

v∗
τt+1+1,t +1

2

.

Based on Theorem 1

(μ|�, X1:t , τt+1) ∼ N

(
μ∗

τt +1,t ,
�

γ ∗
τt+1+1,t

)

(�|X1:t , τt+1) ∼ InvWishp
(
�∗

τt+1+1,t , v
∗
τt+1+1,t

)
.

Since

(X t+1|X1:t , τt+1,�) = (μ|�,X1:t , τt+1) + N(0,�)

it is easy to show that

(X t+1|X1:t , τt+1,�) ∼ N

(
μ∗

τt+1+1,t ,

(
1

γ ∗
τt+1+1,t

+ 1

)
�

)
.

Therefore, the equation shown at the top of this page is
obtained.
According to the generalized matrix determinant lemma

∝
∣∣∣∣∣∣1+

(
X t+1−μ∗

τt+1+1,t

)′(
v∗
τt+1+1,t − p + 1

)
( (

γ ∗
τt+1+1,t +1

)
�∗

τt+1+1,t

γ ∗
τt+1+1,t

(
v∗
τt+1+1,t − p + 1

)
)−1

× (X t+1 − μ∗
τt+1+1,t

)∣∣∣−
(
v∗
τt+1+1,t −p+1

)
+p

2
.

Therefore

(X t+1|X1:t , τt+1)

∼ t

(
d∗
τt+1+1,t ,μ

∗
τt+1+1,t ,

(
γ ∗
τt+1+1,t + 1

)
�∗

τt+1+1,t

γ ∗
τt+1+1,t d

∗
τt+1+1,t

)
.

Similarly, for τt+1 = t , we can get

(X t+1|X1:t , τt+1 = t) ∼ t

(
v0 − p + 1,μ0,

(γ0 + 1)�0

γ0(v0 − p + 1)

)

which is just a special case of (13) by setting τt+1 = t .

REFERENCES

[1] K. Hoad, S. Robinson, and R. Davies, “Automating warm-up length
estimation,” J. Oper. Res. Soc., vol. 61, no. 9, pp. 1389–1403, 2009.

[2] A. Marchetti, A. Ferramosca, and A. H. González, “Steady-state target
optimization designs for integrating real-time optimization and model
predictive control,” J. Process Control, vol. 24, no. 1, pp. 129–145,
Jan. 2014.

[3] J. Chen and J. Howell, “A self-validating control system based approach
to plant fault detection and diagnosis,” Comput. Chem. Eng., vol. 25,
no. 2, pp. 337–358, Mar. 2001.

[4] M. Kim, S. H. Yoon, P. A. Domanski, and W. V. Payne, “Design of a
steady-state detector for fault detection and diagnosis of a residential air
conditioner,” Int. J. Refrig., vol. 31, no. 5, pp. 790–799, Aug. 2008.

[5] S. K. Mahuli, R. R. Rhinehart, and J. B. Riggs, “Experimental demon-
stration of non-linear model-based in-line control of pH,” J. Process
Control, vol. 2, no. 3, pp. 145–153, Jan. 1992.

[6] S. Cao and R. R. Rhinehart, “An efficient method for on-line identifi-
cation of steady state,” J. Process Control, vol. 5, no. 6, pp. 363–374,
Dec. 1995.

[7] J. Wu, S. Zhou, and X. Li, “Acoustic emission monitoring for ultrasonic
cavitation based dispersion process,” J. Manuf. Sci. Eng., vol. 135, no. 3,
Jun. 2013, Art no. 031015.

[8] J. Wu, Y. Chen, S. Zhou, and X. Li, “Online steady-state detection for
process control using multiple change-point models and particle filters,”
IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 688–700, Apr. 2016.

[9] J. Wu, Y. Chen, and S. Zhou, “Online detection of steady-state operation
using a multiple-change-point model and exact Bayesian inference,”
IIE Trans., vol. 48, no. 7, pp. 599–613, Mar. 2016.

[10] K. P. White, M. J. Cobb, and S. C. Spratt, “A comparison of five steady-
state truncation heuristics for simulation,” in Proc. Winter Simulation
Conf., Dec. 2000, pp. 755–760.

[11] A. Mhamdi, W. Geffers, F. Flehmig, and W. Marquardt, On-Line
Optimization of MSF Desalination Plants. Malvern, PA, USA: LPT,
RWTH, 1999.

[12] Y. Yao, C. Zhao, and F. Gao, “Batch-to-batch steady state identification
based on variable correlation and Mahalanobis distance,” Ind. Eng.
Chem. Res., vol. 48, no. 24, pp. 11060–11070, Oct. 2009.

[13] W. Jianguo, S. Zhou, and X. Li, “Acoustic emission monitoring for
ultrasonic cavitation based dispersion process,” J. Manuf. Sci. Eng.,
vol. 135, no. 3, Jun. 2013, Art. no. 031015.

[14] S. Narasimhan, C. S. Kao, and R. S. H. Mah, “Detecting changes of
steady states using the mathematical theory of evidence,” AIChE J.,
vol. 33, no. 11, pp. 1930–1932, Nov. 1987.

[15] E. L. Crow, F. A. Davis, and M. W. Maxfield, Statistics Manual: With
Examples Taken From Ordnance Development. New York, NY, USA:
Dover, 1960.

[16] P. R. Brown and R. R. Rhinehart, “Demonstration of a method for auto-
mated steady-state identification in multivariable systems,” Hydrocarbon
Process., vol. 79, no. 9, pp. 79–83, Sep. 2000.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2021 at 03:46:50 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: SEQUENTIAL BAYESIAN PARTITIONING APPROACH FOR ONLINE STEADY-STATE DETECTION 1895

[17] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” J. Roy. Statist.
Soc. Ser. Methodol., vol. 57, no. 1, pp. 289–300, Jan. 1995.

[18] T. Jiang, B. Chen, X. He, and P. Stuart, “Application of steady-state
detection method based on wavelet transform,” Comput. Chem. Eng.,
vol. 27, no. 4, pp. 569–578, Apr. 2003.

[19] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ, USA:
Princeton Univ. Press, 1976.

[20] D. C. Montgomery, Introduction to Statistical Quality Control.
New York, NY, USA: Wiley, 2007.

[21] D. Aguado, A. Ferrer, A. Seco, and J. Ferrer, “Using unfold-PCA for
batch-to-batch start-up process understanding and steady-state identifi-
cation in a sequencing batch reactor,” J. Chemometrics, vol. 22, no. 1,
pp. 81–90, Jan. 2008.

[22] N. Chopin, “Dynamic detection of change points in long time series,”
Ann. Inst. Statist. Math., vol. 59, no. 2, pp. 349–366, Jun. 2007.

[23] A. Hannart and P. Naveau, “An improved Bayesian information crite-
rion for multiple change-point models,” Technometrics, vol. 54, no. 3,
pp. 256–268, May 2012.

[24] Y. Wen, J. Wu, and Y. Yuan, “Multiple-phase modeling of degradation
signal for condition monitoring and remaining useful life prediction,”
IEEE Trans. Rel., vol. 66, no. 3, pp. 924–938, Sep. 2017.

[25] P. Giordani and R. Kohn, “Efficient Bayesian inference for multiple
change-point and mixture innovation models,” J. Bus. Econ. Statist.,
vol. 26, no. 1, pp. 66–77, Jan. 2008.

[26] X. Wang, “Incorporating knowledge on segmental duration in HMM-
based continuous speech recognition,” Ph.D. dissertation, Amsterdam
Univ., Amsterdam, The Netherlands, 1997.

[27] S. J. Press, “Applied multivariate analysis: Using Bayesian and frequen-
tist methods of inference,” J. Amer. Statist. Assoc., vol. 79, p. 386,
May 1982.

[28] D. Lewandowski, D. Kurowicka, and H. Joe, “Generating random
correlation matrices based on vines and extended onion method,”
J. Multivariate Anal., vol. 100, no. 9, pp. 1989–2001, Oct. 2009.

[29] J. D. Kelly and J. D. Hedengren, “A steady-state detection (SSD) algo-
rithm to detect non-stationary drifts in processes,” J. Process Control,
vol. 23, no. 3, pp. 326–331, Mar. 2013.

[30] J. J. Downs and E. F. Vogel, “A plant-wide industrial process control
problem,” Comput. Chem. Eng., vol. 17, no. 3, pp. 245–255, Mar. 1993.

[31] F. Ju, J. Li, and J. A. Horst, “Transient analysis of serial production
lines with perishable products: Bernoulli reliability model,” IEEE Trans.
Autom. Control, vol. 62, no. 2, pp. 694–707, Feb. 2017.

[32] L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault Detection and
Diagnosis in Industrial Systems. London, U.K.: Springer, 2000.

[33] J. Wu, H. Xu, F. Ju, and B. Tseng, “Adaptive minimal confidence
region rule for multivariate initialization bias truncation in discrete-event
simulations,” Technometrics, submitted for publication.

Jianguo Wu received the B.S. degree in mechani-
cal engineering from Tsinghua University, Beijing,
China, in 2009, the M.S. degree in mechanical
engineering from Purdue University, West Lafayette,
IN, USA, in 2011, and the M.S. degree in statistics
and the Ph.D. degree in industrial and systems engi-
neering from the University of Wisconsin–Madison,
Madison, WI, USA, in 2014 and 2015, respectively.

From 2015 to 2017, he was an Assistant Professor
with the Department of Industrial, Manufacturing
and Systems Engineering (IMSE), The University of

Texas at El Paso, El Paso, TX, USA. He is currently an Assistant Professor
with the Department of Industrial Engineering and Management, Peking
University, Beijing. His research interests are focused on statistical modeling,
monitoring and analysis of complex processes/systems for quality control
and productivity improvement through integrated application of metrology,
engineering domain knowledge, and data analytics.

Dr. Wu is a member of INFORMS, IISE, and SME.

Honglun Xu received the B.S. degree in petroleum
engineering from Northeast Petroleum University,
Daqing, China, in 2013, and the M.S. degree in
petroleum engineering from the China University of
Petroleum, Beijing, China, in 2016. He is currently
pursuing the Ph.D. degree in the Computational
Science Program at The University of Texas at El
Paso (UTEP), El Paso, TX, USA.

His research interests are focused on statistical
modeling, process monitoring, and quality control.

Chen Zhang received the B.Eng. degree in elec-
tronic science and technology (optics) from Tianjin
University, Tianjin, China, in 2012, and the Ph.D.
degree in industrial systems engineering and man-
agement from the National University of Singapore,
Singapore, in 2017.

She is currently an Assistant Professor of industrial
engineering, Tsinghua University, Beijing, China.
Her current research interests include developing
approaches for modeling and monitoring of engi-
neering systems with complex data.

Yuan Yuan received the B.E. degree from Tsinghua
University, Beijing, China, in 2006 and the M.S.
degree in industrial and systems engineering, the
M.S. degree in statistics, and the Ph.D. degree in
industrial and systems engineering from the Univer-
sity of Wisconsin–Madison, Madison, WI, USA, in
2010, 2011, and 2014, respectively.

She is currently a Research Scientist with the IBM
Research, Singapore. Her research mainly focuses
on data analytics, in particular, developing innova-
tive and generic data-driven modeling and analysis

methodologies for complex systems with massive data.
Dr. Yuan has received a number of awards including the QSR Best Student

Paper Award from the Institute for Operations Research and the Management
Sciences (INFORMS) in 2014 and the featured article award of IE Magazine
in 2010.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 28,2021 at 03:46:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


