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ABSTRACT
Although many applications involve autocorrelated multivariate counts, there is a scarcity of research on
their statistical modeling. To fill this research gap, this article proposes a state space model to describe
autocorrelated multivariate counts. The model builds upon the multivariate log-normal mixture Poisson
distribution and allows for serial correlations by considering the Poisson mean vector as a latent process
driven by a nonlinear autoregressive model. In this way, the model allows for flexible cross-correlation and
autocorrelation structures of count data and can also capture overdispersion. The Monte Carlo Expectation
Maximization algorithm, together with particle filtering and smoothingmethods, provides satisfactory esti-
mators for the model parameters and the latent process variables. Numerical studies show that, compared
with other state-of-the-art models, the proposed model has superiority and more generality with respect
to describing count data generated from different mechanisms of the process of counts. Finally, we use this
model to analyze counts of different types of damage collected from a power utility system as a case study.
Supplementarymaterials are available for this article. Go to the publisher’s online edition of IISE Transactions
for additional tables and figures.

1. Introduction

Count data arise in many areas, including ecology, epidemi-
ology, economics, manufacturing, etc., where usually multiple
counts are observed together. As they usually exhibit certain
correlations with each other—i.e., cross-correlations—we call
them multivariate counts and want to analyze them together.
For example, in ecology, counts of different species interact due
to the common environmental features (Billheimer et al., 2001).
In epidemiology, counts of patients with related diseases may
be correlated with each other (Paul et al., 2008). In marketing,
sales volumes of different products or brandsmay influence each
other (Chen et al., 2015). In quality control, counts of different
types of defects may be caused or influenced by some common
factors.

In addition to cross-correlation, in many applications multi-
variate counts evolve over time and have serial correlations with
their previous observations; i.e., autocorrelations. For example,
the count of persons with an infectious disease in this month
is influenced by that in the previous month. The weekly sales
volume of a product often fluctuates with seasonal or economic
variations. The number of defects in neighbor samples in man-
ufacturing may be driven by certain common inertial elements
when the sampling interval is small. Usually, the serial depen-
dence can be either positive or negative.

On top of these correlation features, another common feature
of autocorrelated multivariate counts is overdispersion, which
means, with respect to a model, that the variance of the count
data is greater than the expectation. Overdispersion is often an
affiliation property of cross-correlations and autocorrelations
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and is intensively investigated in Poisson regression models and
time series models. Usually, overdispersion is caused by some
unobserved heterogeneities across the count data. Suppose that
the multivariate counts depend on an unobserved or omitted
covariate zt . Then the change of zt over timewill introduce addi-
tional variance into the count data. A detailed discussion can be
found in Cox and Isham (1980).

Although autocorrelated multivariate counts are quite com-
mon in our daily lives, to the best of our knowledge, a general
model to describe them is yet to be established. A reasonable
model should be able to not only describe cross-correlation
and autocorrelation structures of count data flexibly, but also
accommodate overdispersion. Although statistical models of
univariate time series of count data are thoroughly explored
in previous studies (see Davis et al. (1999) and the references
therein for more background knowledge), the extensions
to multivariate cases are underdeveloped. A brief literature
review of these extensions is discussed below, with their model
properties summarized in Table 1.

1.1. Multivariate Poisson distribution

As we know, the Poisson distribution or its variants is often
used to model count data. To date, there are three main types
of methods to construct multivariate Poisson distributions for
multivariate countsY = [Y1, . . . ,Yd] with dimension d. We will
discuss them in detail below. The first approach directly
extends the bivariate Poisson distribution (Holgate, 1964) to d-
dimensions by retaining the expression of each dimension as a
sum of two independent variables; that is,
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Table . Summary of some state-of-the-art Poisson models of multivariate counts.
“+”: allow for positive correlations; “−”: allow for negative correlations; ×: cannot
describe the feature;

√
: can describe the feature.

Literature Method
Cross-

correlation
Auto-

correlation
Over-

dispersion

Karlis () Sum of Poisson + × ×
Karlis and

Meligkotsidou
()

Sum of Poisson + × ×

Song () Normal copulas +,− × ×
Nikoloulopoulos

and Karlis
()

Discrete copulas +,− × ×

Karlis and
Meligkotsidou
()

Finite mixture +,− × ×

Arbous and
Kerrich ()

Poisson-gamma
mixture

+ × √

Steyn () Poisson-normal
mixture

+,− × √

Aitchison and
Ho ()

Poisson-lognormal
mixture

+,− × √

Sarabia and
Gómez-Déniz
()

Poisson-beta
mixture

+,− × √

Heinen and
Rengifo ()

Multivariate
INGARCH, copulas

+,− + √

Latour () Multivariate GINAR + + √
Pedeli and

Karlis (b)
Multivariate GINAR + + √

Yi = Zi + Z0, i = 1, . . . , d, (1)

where Zi and Z0 follow Poisson distributions with rates λi and
λ0, respectively. Given the parameters� = {λ1, . . . , λd, λ0}, the
joint density of the multivariate Poisson distribution is defined
as p(Y|�) = ∏d

i=1 p(Yi|λi, λ0), whose marginal distribution of
every dimension is the Poisson distribution. Clearly, it is Z0 that
introduces the same cross-correlation between different dimen-
sions. Later extensions to allow different cross-correlations are
also discussed in Kocherlakota and Kocherlakota (1992). The
second approach is to construct the multivariate Poisson distri-
bution using copula (Song, 2000). A copula is a general way to
introduce dependence between variables when their marginal
distributions are given. Its idea is that a d-dimensional distribu-
tion can be written in terms of d marginal distributions and a
copula that describes the dependence structure of these dimen-
sions. However, although copula modeling provides useful tools
for analyzing the cross-correlations between multiple variables
and has been extensively used for continuous distributed data,
its primary difficulty in the discrete case is the lack of uniqueness
of Sklar’s representation and the unidentifiability of the copula.
This difficulty indicates that many of the convenient properties
of a copula cannot carry over from the continuous case to the
discrete case. Therefore, modeling and interpreting dependence
for count data through copulas is still underdeveloped and
subjects to caution (see Genest and Nešlehová (2007) for a
comprehensive discussion). Furthermore, unfortunately, most
models in the above two categories can only support limited
positive cross-correlations of multivariate counts. Furthermore,
they have limited flexibilities in accounting for overdispersion.

A more flexible method is based on the mixture model by
placing a distribution on the mean vector λ = [λ1, . . . , λd] of
d-dimensional Poisson counts. In this way, the method is able

to allow cross-correlations of either sign, as well as overdisper-
sion in a large range. This method can be further divided into
two groups. The first considers a finite mixture, implying that
the mean vector is chosen from finite K components (Karlis
and Meligkotsidou, 2007) with the corresponding probabilities
πk, k = 1, . . . ,K. Every component is a d-dimensional Pois-
son distribution defined in Equation (1) with the parameters
�k = {λk1, . . . , λkd, λk0}. Then the joint probability mass func-
tion (pmf) of Y is given by

p(Y|�1:K, π1:K ) =
K∑

k=1

πk p(Y|�k). (2)

However, the assessment of the unknownK often requires a con-
siderable amount of work. The second method imposes a con-
tinuous distribution g(λ|�) on the mean vector λ. Then the
unconditional multivariate Poisson distribution is a marginal-
ization, integrating out the mean vector distribution as

p(Y|�) =
∫
Rd+

d∏
i=1

p(Yi|λi)g(λ|�)dλ, (3)

where p(Yi|λi) is the Poisson pmf with rate λi for i = 1, . . . , d.
This idea is generally adopted by many models with different
forms of g(λ|�), such as the gamma distribution (Arbous and
Kerrich, 1951; Nelson, 1985), the normal distribution (Steyn,
1976), the log-normal distribution (Aitchison and Ho, 1989),
and the beta distribution (Sarabia and Gómez-Déniz, 2011).
Among them, the one using the log-normal mixture is the
most powerful one. On one hand, it brings the rich vein of
cross-correlation structures of the multivariate normal distribu-
tion into the multivariate Poisson distribution; on the other, it
ensures that the Poisson mean vector is always positive, based
on the logarithmic transformation.

1.2. Multivariate time series of counts

Although many multivariate Poisson distributions have been
proposed in literature as discussed above, extensions account-
ing for the autocorrelation are still in their infancy. One
notable study is the Multivariate Autoregressive Conditional
Poisson (MACP) Model (Heinen and Rengifo, 2007). This
model extends the univariate INteGer-valued AutoRegressive
Conditional Heteroskedasticity time series model (INGARCH;
Ferland et al., 2006) to multivariate cases. Specifically, for a d-
dimensional count Yt = [Yt1, . . . ,Ytd] at time t with the mean
vector λt = [λt1, . . . , λtd],MACP assumes that λt follows a vec-
tor autoregressive moving average type model with order p and
q as

λt = λ0 +
p∑

j=1

A jYt− j +
q∑
j=1

B jλt− j. (4)

Then the joint pmf of Yt given λt is p(Yt |λt ) = ∏d
i=1 p(Yti|λti)

where p(Yti|λti) is the Poisson pmf with rate λti. To further
allow for overdispersion, MACP suggests replacing the Pois-
son distribution p(Yti|λti) with the double-Poisson distribution
p(Yti|λti, φ) where φ is the common overdispersion parame-
ter. In addition, to conquer the limitation that INGARCH can
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only support positive cross-correlation structures, MACP fur-
ther imposes a multivariate normal copula on Yt to allow for
negative ones. Then the joint cumulative distribution function
(cdf) of Yt is defined as a copula function C of the cdfs of d
marginal double Poisson distributions Fi(Yi), i = 1, . . . , d; that
is,

F(Yt ) = C(F1(Y1), . . . , Fd(Yd )). (5)

However, MACP still suffers from the inherent limitation of
INGARCH, that it can only describe positive autocorrelated
count data (Jung et al., 2006). In particular, as defined in Heinen
and Rengifo (2007), MACP(1, 1) is stationary only if the eigen-
values of I − A1 − B1 lie within the unit circle. Then according
to Proposition 2.1 and Proposition 2.2 of Heinen and Rengifo
(2007), the autocovariance matrix of MACP(1, 1) can only
take positive values. Furthermore, as mentioned earlier, since
the copula for discrete data is no longer identifiable, further
theoretical properties and assumptions of MACP are still to
be fully investigated. In particular, inference (and particularly
rank-based inference) for the copula parameters is fraught
with difficulties. Another type of notable work is the extension
of univariate Integer-Value AutoRegressive (INAR) models
to multivariate (MINAR) cases by generalizing the binomial
thinning operator in the INAR models to a thinning matrix
(Pedeli and Karlis, 2013a, 2013b); that is,

Yt = A ◦ Yt−1 + Rt . (6)

The d × d matrix A = {ai j, i, j = 1, . . . , d} acts as the usual
matrix multiplication but keeps the properties of the binomial
thinning operator (Weiß, 2008). Specifically, the operators
ai j◦ are mutually independent. Each operator is defined as
ai j ◦Yj = ∑Yj

k=1 Xk, where {Xk}Yj

k=1 is a sequence of independent
and identically distributed Bernoulli random variables such that
p(Xk = 1) = ai j = 1 − p(Xk = 0) and ai j ∈ [0, 1]. Currently
most work in this field focuses on first-order MINAR models,
denoted as MINAR(1), for bivariate counts with Rt defined as a
bivariate Poisson distribution in Equation (1). This is because,
as analyzed earlier, defining Rt for higher dimensions with
flexible cross-correlation structures is not easy. Currently, the
only MINAR(1) model considering more than two dimensions
is Pedeli and Karlis (2013a), which considers Rt with flexible
cross-correlations between different dimensions. However, this
model assumes A only has diagonal components. Another
limitation of the MINAR models is that they can only support
positive cross-correlations and autocorrelations of count data
and do not allow for large overdispersion (Pedeli and Karlis,
2013b). This is because that the autocovariance matrix of
MINAR models can be written as

γ(h) = Aγ(h − 1) = Ahγ(0), h ≥ 1, (7)

where γ(0) is the cross-correlation matrix. Since both A and
γ(0) can only have positive values according to Equation (6)
of Pedeli and Karlis (2013b), Equation (7) can only achieve
positive autocorrelations as well.

In time series analysis, the two models mentioned above
belong to the class of observation-driven models. As mentioned
in Davis et al. (1999), while the observation-driven model is
advantageous for easily calculating the forecasting density func-
tion, it is not good at characterizing the evolutionary properties

of time series. An alternative is the parameter-driven model,
which assumes that the serial correlation is induced by a latent
variable. Then the evolutionary properties can be typically
inherited by those assumed for this latent variable. Usually, we
call this latent variable as the hidden state and can resort to state
space approaches for analysis (Durbin and Koopman, 2000).

In the case of univariate count series, state space approaches
have been widely used in Zeger (1988), Harvey and Fernandes
(1989), and Chan and Ledolter (1995). For more discussions
about univariate count series modeling, please refer to Fokianos
(2012). For multivariate cases, Jørgensen et al. (1999) and Jung
et al. (2011) propose two-factor models to describe autocor-
related multivariate Poisson counts. Both models assume that
the count data of each dimension follow a Poisson distribution
whose mean value is driven by some common latent factors
following gamma Markov processes (Jørgensen et al., 1999) or
Gaussian autoregressive processes (Jung et al., 2011). The for-
mer allows for mere positive autocorrelations, whereas the latter
allows for autocorrelations of either sign. As these factor models
explain the interactions of different counts by regressionmodels,
they avoid directly analyzing their cross-correlation structure.
However, the choice of latent factors usually requires domain-
specific knowledge, and the criteria about how many factors are
needed are not always clear. As a result, it is difficult to general-
ize these models to fields where no factor or ambiguous factors
exist.

Motivated by the wide application of autocorrelated multi-
variate counts and the infancy of reasonable models to describe
them, this article further explores this field with a twofold con-
tribution. First, this article proposes an easy-to-interpret state
space model to describe autocorrelated multivariate counts.
This model allows for flexible cross-correlation and autocor-
relation structures of count data and can handle a large range
of overdispersion. Specifically, this model builds upon the log-
normalmixture Poisson distribution ofAitchison andHo (1989)
and allows for serial dependence by considering the Poisson
mean vector as a latent variable evolving according to a state
space model. In this way, the model can describe the cross-
correlations and autocorrelations of count data flexibly. By
integrating out the latent variable distribution, this model can
generate itself an over-dispersed unconditional distribution and
hence can capture the overdispersion of count data. Second,
this article presents an efficient estimation algorithm for the
proposed model. The challenge is that the marginal uncondi-
tional likelihood function of the model has no closed form,
so the model needs numerical integration methods for estima-
tion. Here theMonte Carlo ExpectationMaximization (MCEM)
algorithm is used, where the MC part is done by particle filter-
ing and smoothing methods. Numerical studies show that the
MCEM algorithm presents accurate estimation results for the
model parameters. Particle filtering also provides an asymptot-
ically unbiased estimator for the latent variable in a sequential
way with a small computational complexity.

The remainder of this article is organized as follows. Section 2
introduces our proposed state space multivariate Poissonmodel
in detail. Section 3 discusses the model estimation procedure.
Section 4 stresses the advantages of the proposedmodel by com-
paring it with some other state-of-the-art Poisson models of
multivariate counts and demonstrates the proposal using a real
data example from the power utility industry. Finally, Section 5
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Figure . The evolution of SSMP.

concludes this article with remarks. Some technical details are
provided in the Appendix.

2. A state spacemodel for autocorrelated
multivariate Poisson counts

In this section, we introduce a state space model to describe
autocorrelated multivariate counts, which can not only flexibly
describe the cross-correlation and autocorrelation structure of
count data but also take overdispersion into consideration.

Consider d-dimensional count variables Yt = [Yt1, . . . ,Ytd]
for time t = 1, . . . ,T . For each dimension at time t , conditional
on its mean λti, we assume Yti follows an independent Poisson
distribution with the pmf as

p(Yti|λti) = exp(−λti)λ
Yti
ti

Yti!
, i = 1, . . . , d, t = 1, . . . ,T. (8)

Then the joint conditional distribution of Yt is

p(Yt |λt ) =
d∏
i=1

p(Yti|λti), t = 1, . . . ,T, (9)

where λt = [λt1, . . . , λtd]. We assume Xt = log(λt ) =
[log(λt1), . . . , log(λtd )] as a latent random variable follow-
ing a multivariate normal distribution. It is Xt that introduces
both cross-correlations and autocorrelations into Yt . Specifi-
cally, we consider Xt evolves according to a state space model
as

p�(Xt |Xt−1) : Xt − μ = � × (Xt−1 − μ) + εt , (10)

where εt is the white noise following a d-dimensional multi-
variate normal distribution with mean vector 0 and covariance
matrix �; i.e., N(0,�). So far we have introduced all of the
model parameters � = {μ,�,�}.

As long as � satisfies

det(I − z�) �= 0, for all |z| ≤ 1, z ∈ C,

Xt is stationary, and the marginal distribution of Xt is multi-
variate normal with mean vector μ and covariance matrix 	,
where 	 is the solution of 	 = �	�′ + � according to the
Yule–Walker relationship.

Marginalizing out Xt , the unconditional distribution of Yt
can be expressed as

p�(Yt ) =
∫
Rd+

d∏
i=1

exp(− exp(Xti)) exp(Xti)
Yti

Yti!
p�(Xt )dXt ,

(11)

where p�(Xt ) is the probability density function (pdf) of
N(μ,	).

Figure 1 illustrates the evolution process of {Xt ,Yt}, which
can be viewed as a nonlinear state space model. This hierarchi-
cal model allows for flexible cross-correlations and autocorrela-
tions of multivariate counts. It ties multiple counts together but
allows for individual stochastic components through the term
εt . Higher-order autocorrelations of Xt can also be accommo-
dated in the model. Hereafter, we call the proposedmodel as the
State SpaceMultivariate Poissonmodel (SSMP). It is to be noted
thatwhen d = 1, SSMPdegenerates to the univariate parameter-
driven count series models of Chan and Ledolter (1995), Kuk
andCheng (1997), and Jung andLiesenfeld (2001). Although the
unconditional distribution of Yt in Equation (11) has no closed
form, its moment properties can be obtained through condi-
tional expectations and the properties of Poisson and normal
distributions as shown in the following propositions. Detailed
derivations are given in the Appendix.

Proposition 1. (Mean of SSMP). Provided that Xt is stationary
following Equation (10), Yt is stationary with its unconditional
mean as

E(Yti) ≡ αi = exp
(

μi + 1
2
�ii

)
(12)

for i = 1, . . . , d, where �ii is the ith diagonal component of 	.

This proposition shows that, as long as the latent variable is
stationary, the process of counts is stationarywhosemean vector
is jointly decided by � = {μ,�,�}.
Proposition 2. (Variance of SSMP). Provided that Xt is station-
ary following Equation (10), the unconditional covariance matrix
of Yt can be expressed as

Var(Yti) = αi
[
1 + αi(exp(�ii) − 1)

]
,

for i = 1, . . . , d, (13)

Cov(Yti,Yt j) = αiα j(exp(�i j) − 1),

for i �= j, i, j = 1, . . . , d. (14)

As a result,

Corr(Yti,Yt j)

= exp(�i j) − 1√[
α−1
i + exp(�ii) − 1

][
α−1
j + exp(� j j) − 1

] , (15)

where �i j is the (i, j) component of 	.
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Figure . The regions of cross-correlation, overdispersion, and autocorrelation attainable for SSMP with fixed α and tunable {μ, γ0, �12, �21} for bivariate counts.

Equation (13) shows that the unconditional variance ofYti for
every dimension of SSMP exhibits overdispersion. The amount
of overdispersion increases with �ii and αi. Only if �ii = 0 indi-
cating that Xti degenerates to a fixed value, the overdispersion
disappears, and consequentlyYti follows the traditional Poisson
distribution with no serial correlations. The cross-correlation
structure of Yt also depends on �i j and can take either positive
or negative values. However, as mentioned in Aitchison and Ho
(1989), because

|Corr(Yti,Yt j)| < |Corr(Xti,Xt j)|, (16)

the range of possible cross-correlations of Yt is not as wide as
those of Xt . However, their gap becomes smaller when αi and
α j become larger. Figure 2(a) provides the descriptive power
of SSMP for bivariate counts with respect to attainable cross-
correlations and overdispersion. Here we only consider a special
case with μ1 = μ2 = μ, �11 = �22 = γ0, and hence α1 = α2 =
α according to Equation (12). We fix α but vary μ, γ0, �12, and
�21 to get different realizations of the cross-correlation structure
with the same mean vector. The enclosed areas are the attain-
able regions for SSMP with α = 1, 3, and 10, respectively. We
can see that SSMP has the flexibility to accommodate different
overdispersion magnitudes, which can be controlled by choos-
ing appropriate γ0 while maintaining the same α. On the other
hand, for a small α, the model cannot realistically describe cir-
cumstanceswithmoderate or strong negative cross-correlations.
As α increases, the model is able to describe larger negative
cross-correlations.

Proposition 3. (Autocorrelation of SSMP). Provided that Xt
is stationary, the unconditional autocorrelations of Yt can be
expressed as

Corr(Yti,Y(t−τ ) j)

= E[exp(Xti + X(t−τ ) j)] − αiα j

αiα j

√
[α−1

i + exp(τii) − 1][α−1
j + exp(� j j) − 1]

(17)

for τ = 0, 1, . . . , i, j = 1, . . . , d.

The unconditional autocorrelations of Yt depend on
E[exp(Xti + X(t−τ ) j], which can be calculated from the

characteristic function of Xt (see Appendix for details). The
autocorrelations can be either positive or negative, but still we
have

|Corr(Yti,Y(t−τ ) j)| < |Corr(Xti,X(t−τ ) j)|. (18)

Similarly, in Figure 2(b) we plot the descriptive power of SSMP
with respect to attainable cross-correlations and first-order
autocorrelations with the same settings as Figure 2(a). We see
that SSMP can describe processes of counts with certain neg-
ative autocorrelations but not as flexible as positive ones. With
the increase in α, the attainable regions increase for both kinds
of correlations. In summary, Propositions 2 and 3 indicate that
SSMP is more suitable to describe count data with moderate or
big mean values.

3. Parameter estimation and inference

3.1. Prediction and inference

Now we study how to make inference and predictions based on
SSMP. Here we temporarily assume that the model parameters
� are known and will discuss how to estimate them in Section
3.2.

Since in SSMP, {Y1:T } are observable whereas {X1:T } are
latent, most of the inference problems focus on estimating
the latent process p�(X1:T |Y1:T ) given the total T observa-
tions {Y1:T }. More specifically, we first focus on predicting Xt+1
based on the previous and current observations {Y1:t}; i.e.,
p�(Xt+1|Y1:t ). Second, we study the inference of Xt based on
the total observations {Y1:T }; i.e., p�(Xt |Y1:T ) for t = 1, . . . ,T .
The challenge involved is due to the posterior distribution
p�(Xt |Y1:t ) having no closed form for arbitrary �; thus we
need to resort to numerical methods, such as numerical inte-
gration or Markov Chain Monte Carlo (MCMC). In addition,
we often need to update the predictions or estimations upon
the arrival of new observations; e.g., to obtain p�(Xt+2|Y1:(t+1))

from p�(Xt+1|Y1:t ). As a result, it is desirable to have computa-
tionally efficient algorithms to make inference and predictions
sequentially.

Considering the performance and computational efficiency,
in state space model analysis, Particle Filtering (PF, also called
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Sequential Monte Carlo) and Particle Smoothing (PS) meth-
ods are particularly useful. PF is designed to approximate
p�(Xt |Y1:t ) in a sequential manner with acceptably small
computational complexity (Hürzeler and Künsch, 1998; Liu
and Chen, 1998; Doucet et al., 2000). Its basic idea is to com-
pute p�(Xt |Y1:t ) by importance sampling; i.e., approximating
p�(Xt |Y1:t ) by a set of samples, called particles, with their
associated weights. The weight assigned to each particle is
proportional to its probability of being sampled from the pos-
terior distribution. When new data are observed, new particles
and their associated weights can be efficiently obtained at an
affordable computational burden.

In particular, for the prediction task, we assume at time t , the
posterior density is approximated by weighted Dirac delta func-
tions as

p�(Xt |Y1:t ) ≈
Np∑
i=1

Wi
t · δ(Xt − xit ). (19)

Here in Equation (19), δ is the Dirac delta function; Np
is the number of particles; and the normalized weights
Wi

t satisfy
∑Np

i=1W
i
t = 1. To obtain the prediction distribu-

tion p�(Xt+1|Y1:t ), we first generate samples of Xt+1 from
p�(Xt+1|Y1:t ). For this purpose, each particle xit+1 is propagated
following the state equation in Equation (10) with a random
noise εit+1 drawn from the state noise distribution N(0,�); i.e.,
xit+1 = μ + �(xit − μ) + εit+1. Then we have

p�(Xt+1|Y1:t ) ≈
Np∑
i=1

Wi
t · δ(Xt+1 − xit+1). (20)

When the new observation Yt+1 arrives, we update the condi-
tional distribution ofXt+1 and approximate p�(Xt+1|Y1:t+1). In
fact, the updated distribution takes the same form as Equation
(20) and uses the same set of particles. It only needs to update
every particle’s weight based on the likelihood p�(Yt+1|xit+1)

based on the Bayes rule; that is,

p�(Xt+1|Y1:(t+1)) ≈
Np∑
i=1

Wi
t+1 × δ(Xt+1 − xit+1), where

Wi
t+1 ∝ Wi

t × p(Yt+1|xit+1).

The convergence of the approximated distribution by PF to the
true p�(Xt |Y1:t ) is guaranteed by the Central Limit Theorem
(Liu, 2008), which ensures its estimation accuracy. Due to its
computational efficiency and sequential nature, PF has been
widely applied for nonlinear state space model inference and
latent process tracking. See Doucet et al. (2001) and the refer-
ences therein for a detailed introduction.

One problem of PF is that the distribution of the parti-
cles’ weights becomes more and more skewed as t increases.
Hence, after some iterations, only very few particles have
non-zero weights. This phenomenon is called degeneracy. We
can evaluate it in terms of the so-called Effective Sample Size
(ESS; Liu, 2008), which is given by ESS = (

∑Np
i=1(W

i
t )

2)−1. An
intuitive solution for degeneracy is to multiply the particles
with higher normalized weights and discard the particles with
lower weights. This can be done by adding a resampling step.
Specifically, if ESS is smaller than a pre-specified threshold α,

we resample from the set {(Wi
t , xit ), i = 1, . . . ,Np} with the

probabilities p(x̂ j
t = xit ) = Wi

t , i = 1, . . . ,Np with replacement
Np times, to get a new set {( 1

Np
, x̂ j

t ), j = 1, . . . ,Np}. In this
way, the skewness of the weights’ distribution can be reduced.
The detailed PF procedure involving the resampling step is
summarized in Algorithm 1.

Algorithm 1 PF
At time t = 1

1: Initialization: sample xi1 ∼ p0(Xt ) for i = 1, . . . ,Np.
2: Compute the weights wi

1 = p(Y1|xi1) for i = 1, . . . ,Np and
normalize the weightsWi

1 = wi
1∑Np

i=1 wi
1
, i = 1, . . . ,Np.

3: Calculate the filtered distribution p(X1|Y1) ≈∑Np
i=1W

i
1δ(X1 − xi1).

At time t ≥ 2
4: Sample xit ∼ p�(Xt |xit−1) for i = 1, . . . ,Np.
5: Compute the weights wi

t = Wi
t−1 · p(Yt |xit ) for

i = 1, . . . ,Np, and normalize the weightsWi
t = wi

t∑Np
i=1 wi

t
, i =

1, . . . ,Np.
6: Calculate the filtered distribution p�(Xt |Y1:t ) ≈∑Np

i=1W
i
t δ(Xt − xit ).

7: If the resample criterion is satisfied—i.e., ESS =
(
∑Np

i=1(W
i
t )

2)−1 < a—then resample with replacement
Np times from {xit , i = 1 : Np} with the probabilities
p(x̂ j

t = xit ) = Wi
t , i = 1, . . . ,Np, and replace the previous

set {(Wi
t , xit ), i = 1, . . . ,Np} by {( 1

Np
, x̂ j

t ), j = 1, . . . ,Np}.
8: Terminate when t = T ; otherwise, t = t + 1, and go back

to 4.

Now we consider estimating the latent process given the
total T observations—i.e., p�(Xt |Y1:T ), t = 1, . . . ,T—by PS.
Its underpinning concept is to approximate p�(Xt |Y1:T ) with
the same particles as filtering but to readjust their weights by
considering the information of the future observations {Yt+1:T };
that is,

p�(Xt |Y1:T ) ≈
Np∑
i=1

Wi
t|Tδ(Xt − xit ), (21)

for t = 1, . . . ,T , where

Wi
t|T = Wi

t

Np∑
j=1

W j
t+1|T p�(x j

t+1|xit )∑Np

l=1W
l
t p�(x j

t+1|xlt )
,

t = 1, . . . ,T − 1, i = 1, . . . ,Np, (22)

and Wi
T |T = Wi

T , i = 1, . . . ,Np. The detailed PS procedure is
summarized in Algorithm 2.

The computational complexities of filtering algorithms are
generally much lower compared with other inference proce-
dures, as they allow sequential updating when samples are
observed incrementally. In particular, the PF updates the con-
ditional distribution P(Xt+1|Y1:(t+1)) from P(Xt |Y1:t ) when
observing the new sample Yt+1. Given the particle size Np, the
complexity of PF at each step is O(Np). On the other hand,
PS updates the distribution P(Xi|Y1:(t+1)) from P(Xi|Y1:t ) for
i = 1, . . . , t . It has complexity O(tN2

p ) to update all state esti-
mations at time t . In our experiments using a laptop with an
Intel i5 CPU, it took 0.015 seconds for one PF iteration to obtain
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Algorithm 2 PS
1: Start by settingWi

T |T = Wi
T for i = 1, . . . ,Np.

2: For each t = T − 1, . . . , 1, compute the smoothed weights
by

Wi
t|T = Wi

t

Np∑
j=1

W j
t+1|T p�(x j

t+1|xit )∑Np

l=1W
l
t p�(x j

t+1|xlt )
, i = 1, . . . ,Np.

3: Calculate the smoothed distribution p�(Xt |Y1:T ) ≈∑Np
i=1W

i
t|Tδ(Xt − xit ) for t = 1, . . . ,T .

P(Xi|Y1:i), i = 1, . . . , 500, and 15 seconds for PS to obtain
P(Xi|Y1:500), i = 1, . . . , 500 for a two-dimensional SSMP pro-
cess with Np = 500. In general, we believe that the computa-
tional load with increasing Np should not be a major concern,
due to the fast development of high-performance parallel com-
puting. In fact, PF is inherently parallel, as it essentially consists
of exploration of the state space by random, but independent,
particles. The particles only interact when their weights need
normalization. As a result, parallel particle filtering can be devel-
oped to take advantage of high-performance computing envi-
ronments.We refer the readers to Brun et al. (2002) andDurham
and Geweke (2011) and subsequent references for more details
on these developments. In addition, PF algorithms have been
developed that are scalable in the ultra-high-dimensional cases
with small computation complexity (e.g., Beskos et al., 2014).
These algorithms may shed light on the application of SSMP
in high-dimensional cases, which we will explore further in our
future studies.

It should also be noted that in general, PF requires more
particle samples for higher-dimensional state space model
estimation. This is due to the space to be sampled increas-
ing drastically with the dimension d, which makes it much
harder for particles to efficiently propagate to the subspace with
identifiably nonzero pdf. Therefore, weight degeneracy is the
fundamental obstacle for particle filtering in high-dimensional
models. To avoid collapse, the particle sample size Np should
be large enough. For Gaussian state space models, some PF
methods, such as the bootstrap particle filter, can remain stable
and consequently converge as long as Np grows exponentially
fast of d (Bengtsson et al., 2008). The corresponding estimation
error is bounded in the order of ct/

√
Np, where ct is a constant

independent of d (Theorem 4.3.1, Smith et al., 2013). In addi-
tion, it should be noted that ct increases exponentially with t .
Therefore, Np should also increase exponentially in t in order
to achieve a given accuracy at time t Considering these features,
we suggestNp being exponential in p andT (the total time series
length) to ensure the performance of the algorithm. Based on
some additional simulation results, we found that for SSMP
with d = 10 and T = 500, Np = 1000 is sufficient to guarantee
the convergence of PF and consequently the accuracy of the
inference (in terms of parameter estimation and prediction).
For extremely long time series, recalibration using full Bayesian
MCMC can be performed periodically with interval T∗. T∗ is
the maximum time length for which the approximation of PF
can achieve a pre-specified accuracy. The full Bayesian MCMC
can guarantee obtaining accurate samples from the posterior

distributions P(XkT∗ |Y1:kT∗ ), k = 1, 2, . . . Consequently, these
samples can be used as particles for future filtering before the
next calibration, which can effectively avoid accumulation of
errors without substantially increasing computational load.

3.2. Parameter estimation

This section considers estimation of the parameters � of SSMP.
In the Maximum Likelihood Estimation (MLE) framework,
a natural and efficient estimation method to deal with latent
variables is the Expectation Maximization (EM) algorithm. The
EM algorithm is an iterative procedure that seeks �(q) in the
qth iteration such that the likelihood is increased from that in
the (q − 1)st iteration. Its key idea is to postulate the “missing”
data {X1:T } and to consider maximizing the likelihood function
given the complete data {X1:T ,Y1:T }. Underlying this strat-
egy is the idea that maximizing the “complete” log-likelihood
log p�(X1:T ,Y1:T ) is easier than maximizing the incomplete
one log p�(Y1:T ). Here, due to the Markovian structure of
SSMP, the complete data log-likelihood has the form

log p�(X1:T ,Y1:T ) = log p0(X1) +
T−1∑
t=1

log p�(Xt+1|Xt )

+
T∑
t=1

log p(Yt |Xt ). (23)

However, because {X1:T } are unavailable, the EM algorithm
replaces Equation (23) byQ(�,�(q)), which is the conditional
expectation of Equation (23) with respect to {X1:T } given the
observations {Y1:T } using the parameters �(q) in the current
iteration; that is,

E step: Q(�,�(q)) =
∫

p�(q) (X1:T |Y1:T )

× log p�(X1:T ,Y1:T )dX1:T . (24)

Then we want to find the revised parameter estimates �(q+1)

that maximize the function

M step: �(q+1) = argmax
�

Q(�,�(q)). (25)

For SSMP, we can getQ(�,�(q)) in Equation (24) as

Q(�,�(q)) =
T−1∑
t=1

∫∫
p�(q) (Xt ,Xt+1|Y1:T )

× log p�(Xt+1|Xt )dXtdXt+1. (26)

Unfortunately, here p�(q) (Xt ,Xt+1|Y1:T ) is not analytical and
consequently Q(�,�(q)) is intractable. However, on the other
hand, the particles used in PF and PS can be viewed as samples
from the conditional distribution. As a result, we can use these
particles to approximate p�(q) (Xt ,Xt+1|Y1:T ) and consequently
to implement the MCEM algorithm for parameter estimation.
In more details, from Equations (19) and (21), we obtain
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Q̂(�,�(q)) ≈
T−1∑
t=1

Np∑
i=1

Np∑
j=1

Wij
t,t+1|T log p�(x j

t+1|xit ), where

Wij
t,t+1|T = Wi

t

W j
t+1|T p�(q) (x j

t+1|xit )∑Np

l=1W
l
t p�(q) (x j

t+1|xlt )
. (27)

For more detailed derivations together with the convergence
properties for PF- and PS-based MCEM, please refer to Schön
et al. (2011).

In the M step, with the gradient available for Equation (27),
we get �(q+1) = {μ(q+1),�(q+1),�(q+1)} as


(q+1) = [(I − �(q+1))μ(q+1),�(q+1)]′

=
⎛
⎝T−1∑

t=1

Np∑
i=1

Np∑
j=1

Wij
t,t+1|Tx

j
t+1z

i′
t

⎞
⎠

×
⎛
⎝T−1∑

t=1

Np∑
i=1

Np∑
j=1

Wij
t,t+1|Tz

i
tz

i′
t

⎞
⎠

−1

, (28)

�(q+1) = 1
T − 1

T−1∑
t=1

Np∑
i=1

Np∑
j=1

Wij
t,t+1|T

(
x j
t+1 − 
(q+1)zit

)

×
(
x j
t+1 − 
(q+1)zit

)′
, (29)

where zit = [1, xit ]. For detailed derivation of the EM algorithm,
please refer to the Appendix. The procedure of the particle EM-
based estimation is summarized in Algorithm 3.

Algorithm 3MCEM
1: Set q = 0 and initialize �(q) such that log p�(q) (Y1:T ) is

finite.
2: Expectation (E) Step:

• Run Algorithms 1 and 2 to obtain the filtered and
smoothed distributions for t = 1, . . . ,T .

• Calculate Q̂(�,�(q)) according to Equation (27).
3: Maximization (M) Step:

• Compute�(q+1) according to Equations (28) and (29).
4: Check the non-termination condition Q̂(�(q+1),�(q)) −

Q̂(�(q),�(q)) ≥ ε for some ε ≥ 0. If satisfied, update q →
q + 1 and return to 2; otherwise, terminate.

The following simulation was conducted to illustrate the
performance. We set Np = 500 to estimate a two-dimensional
SSMP process with series length T = 500. The parameters were
set to be � = [0.6, 0.1; 0.2, 0.7], μ = [4, 4], and � = 0.25I2×2.
We replicated the simulation 200 times. Each replication
included data generation, estimation, and prediction, to eval-
uate the performance of the proposed method. For every
replication, we randomly picked an initial value of �(0) and
estimated the parameters iteratively based on the MCEM
algorithm. Table 2 lists the estimation results. We observe that
both the bias and the Root Mean Square Error (RMSE) of
the estimators are acceptably small, illustrating the satisfactory
estimation accuracy and stability of theMCEMalgorithm. Then
we used the estimated parameters � to track the latent states
{XT+1:T+100} for the subsequent 100 observations {YT+1:T+100}

Table . Estimation bias and RMSE of Algorithm  based on  replications.

True value Estimate bias RMSE

φ1 . − . .
φ2 . − . .
φ3 . − . .
φ4 . − . .
μ1 . . .
μ2 . . .
σ11 . − . .
σ12  . .
σ22 . − . .

based on Algorithm 1. The filtering results in one replication
are shown in Figure 3. We can see that the tracked states (red
crosses) based on PF almost overlap with the true states (the
blue circles) with slight differences.

4. Case studies

4.1. Simulation studies

As emphasized earlier, themost advantageous property of SSMP
is that it allows for more flexible cross-correlation and auto-
correlation structures of count data compared with other state-
of-the-art models. Here we demonstrate this point using some
numerical studies.We compare SSMPwith the log-normal mix-
ture Poisson model (LP) of Aitchison and Ho (1989), which is
a sub-model of SSMP, by setting the autocorrelation structure
� = 0, and the other two time series models, MACP of Heinen
and Rengifo (2007) with orders p = 1 and q = 1 (shorted as
MACP (1, 1)), and MINAR(1) of Pedeli and Karlis (2013b). In
our experiments, 500 observations were generated from each
model and then fitted by all of these models using MLE meth-
ods separately. Here we adopt the Bayesian Information Crite-
rion (BIC) to evaluate their fitting performances. In particular,

BIC = −2 ln L̂ + k ln(n),

where L̂ is the fitted likelihood, k is the number of parameters in
the model, and n is the number of observations. The parameters
estimated in every model are listed in Table 3 with the same
notations as those in the original papers, together with the
corresponding k for a two-dimensional Poisson process.

For illustration purposes, here we simply consider pro-
cesses of bivariate counts with either positive or negative cross-
correlations or autocorrelations. Table S.2 (online) summarizes
the true parameters and the fitted ones of all of these models,
and Table 4 presents their BIC values with the corresponding
logarithm of the fitted likelihood in the parenthesis.

Furthermore, we consider the prediction power of the fitted
models. Following Czado et al. (2009), we adopt the Dawid–
Sebastiani (DS) score to evaluate the prediction power. In par-
ticular, for every fitted model, we derived the one-step-ahead
prediction probability P(Yt |Y1:t−1,�) for t = 2, . . . ,T and
calculated the DS score for every dimension. Denote μt =
E(Yt |Y1:t−1) ≡ [μt,1, μt,2, . . . , μt,p] and σt = Cov(Yt |Y1:t−1)

with diagonal element [σt,1, σt,2, . . . , σt,p]. Then the DS score
for dimension i is defined as

DSSt,i(Yt,i) = Yt,i − μt,i

σt,i
+ 2 log(σt,i).
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Figure . The tracked states {XT+1:T+100} based on Algorithm  with parameters estimated by Algorithm .

Table 5 reports themean of theDS scores over theT − 2 samples
for different fitted models, with the Mean Squared Prediction
Error (MSPE) shown in the parentheses. The results are consis-
tent with those in Table 4. In both tables, the first sign in SSMP
indicates the sign of the cross-correlation, and the second sign
indicates the sign of the autocorrelation.

We can see that, generally, the, results are consistent with
the results based on BIC values. The fitted model that has the
same form as the true model has the lowest DS score, mean-
ing the best prediction performance. However, SSMP is always
the second best with a slight higher DS score or BIC value. This
demonstrates that SSMP is able to describe count data gener-
ated by different models (mechanisms). Furthermore, for data

Table . Parameters estimated for different models together with k for a two-
dimensional Poisson process.

Model MINAR() MACP(, ) SSMP LP

Parameters A, λ1, λ2, φ A,B, ω, φ, (�) �,μ, � μ, �
k  ()  

Table . The BIC values of the fitted models with the corresponding logarithm of
the fitted likelihood in the parenthesis.

Fittedmodels

DataModel MINAR() MACP(, ) SSMP LP

MINAR()  (−)  (−)  (−)  (−)
MACP(, )  (−)  (−)  (−)  (−)
LP  (−)  (−)  (− )  (−)
SSMP (−+)  (−)  (−)  (−)  (−)
SSMP(++)  (−)  (−)  (−)  (−)
SSMP(+−)  (−)  (−)  (−)  (−)

Table . The DS score for different models (with the MSPE shown in the
parenthesis).

Fittedmodels

Datamodel MINAR() MACP(, ) SSMP LP

MINAR() . (.) . (.) . (.) . (.)
MACP(, ) . (.) . (.) . (.) . (.)
LP . (.) . (.) . (.) . (.)
SSMP(−+) . (.) . (.) . (.) . (.)
SSMP(++) . (.) . (.) . (.) . (.)
SSMP(+−) . (.) . (.) . (.) . (.)

coming from MINAR(1, 1) or MACP(1, 1) or positive autocor-
related and cross-correlated SSMP (the fifth row), the DS scores
of different fitted models are similar. This indicates that all three
models can describe these processes equally well. On the other
hand, MINAR(1, 1) has the largest BIC values and DS scores
for data coming from LP or negative cross-correlated or auto-
correlated SSMP data (the fourth or sixth row). The reason for
the former is that the LP data have large overdispersion, and
the reason for the latter is that MINAR cannot describe either
negative cross-correlations or negative autocorrelations. On the
contrary, although MACP(1, 1) can fit the LP data or negative
cross-correlated SSMP data, it still fails to predict data with neg-
ative autocorrelations. As to LP, it has comparatively small BIC
values but large DS scores for almost all cases, indicating that LP
may overfit the data.

4.2. A real application in the power utility industry

Nowweuse the proposed SSMPaswell as the other threemodels
to analyze the dynamic interactions of different types of damage
that can occur in a power utility system. The dataset records the
counts of three types of damage in a region every day for a period
of T = 100 days. Due to confidentiality reasons, we reserve the
detailed information of these three types of damage but sim-
ply denote them as type A, type B, and type C. Different types
of damage may be caused by common weather-related condi-
tions or accidents. Therefore, they may have certain contempo-
raneous correlations with each other and serial correlations with
their previous observations. Figure 4 shows the logarithm of the
count data over time. Their similar change patterns reveal their
cross-correlation structure to some degree. Figure S.1 shows the
autocorrelation function of these counts, from which we can
see strong serial correlations. Descriptive statistics for the count
data are also summarized in the left part of Table 6. We can
see that the empirical marginal distributions of the count data
are clearly over-dispersed, and their sample correlations are all
positive.

We use these samples to fit SSMP. The parameter estimates
based on Algorithm 3 with N = 21 replications are illustrated
in Table 7. In every replication we initialized �(0) by adding
some random noise to the calculated {μ,�,�} in the left part
of Table 6. We set Np = 1000 to ensure the accuracy of the E-
step. Each iteration took around 200 seconds to complete on
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Figure . Logarithm of the count data in the power utility system.

Table . Descriptive statistics for the count data in the power utility system.

Data Fitted SSMP Fitted LP FittedMACP(, ) FittedMINAR()

Type A Type B Type C Type A Type B Type C Type A Type B Type C Type A Type B Type C Type A Type B Type C

Mean . . . . . . . . . . . . . . .
Standard dev. . . . . . . . . . . . . . . .
Overdispersion . . . . . . . . . . . .   
Cross- . . . . .
correlation . . . . . . . . . .

. . . . . . . . . . . . . . .
Lag  . . . . . . . . . . . .
Autocorrelation . . . . . . . . . . . .

. . . . . . . . . . . .
loglikelihood − − − −
DSS(MSPE) . () . () . () . ()

Residual mean . . . − . . . − . − . − . . . .
Standard dev. . . . . . . . . . . . .

Lag  Autocorrelation . − . . . . . . . . − . − . − .

− . . . . . . . . . − . . .
. . . . . . − . − . − . − . . − .

Q3 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

Q5 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

a single-core personal computer. Figure S.2 shows the conver-
gence process of every replication.We see generally that the esti-
mates converge fast in the first n = 5 iterations. Based on the
fitted model, we draw the one-step ahead prediction of log(Yt )

in Figure S.3. We also fit the LP, MACP(1, 1), and MINAR(1)
models using the data. Their corresponding parameter esti-
mates are shown in Table S.1. It should be noted that because
the dimension of the count data is three, we adopted Pedeli
and Karlis (2013a), the only MINAR(1) model dealing with
counts with more than two dimensions, for comparison. How-
ever, this work assumes that the binomial thinning matrix only
has diagonal components. Their fitted log-likelihood is shown in
Table 6.

Table . The parameter estimates for SSMP based on Algorithm () with N = 21
replicates (the standard deviations are shown in parentheses).

type A type B type C

μi . (.) . (.) . (.)
φi j . (.) − . (.) . (.)

− . (.) . (.) . (.)
. (.) . (.) . (.)

σi j . (.)
. (.) . (.)
. (.) . (.) . (.)

From the parameter estimates in Table 7 and Table S.1, we
computed the implied estimates for the moments of the uncon-
ditional distribution of the count data for every fitted model
and compared them with their sample counterparts as shown
in the left part of Table 6. We can see that for SSMP, its cal-
culated moments and overdispersion closely match the sample
counterparts, indicating that SSMP provides good representa-
tions of the cross-correlations and autocorrelations of the count
data. Although MACP has poor fitted log-likelihood values, it
has almost as good moment results as SSMP. This good result
is due to the use of the Gaussian copula, which successfully cap-
tures the left correlation structures in addition to the conditional
model. As to LP, it can still describe the cross-correlations satis-
factorily; however, it cannot describe the autocorrelations at all.
As forMINAR(1), it fails to provide convincing fitting results for
any statistic, which ismainly due to its prohibition of overdisper-
sion and off-diagonal autocorrelations. We also compared the
prediction power of these fitted models in terms of DS scores
as well as the MSPE as shown in Table 6, where SSMP gives the
smallest DS score and MSPE.

We further dignose the models. If a model is well-specified,
its normalized Pearson residuals for every dimension should
have a zeromean and unit variance and be serially uncorrelated.
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Figure . Quantile-quantile plots of the normalized PIT residuals for SSMP and MACP(, ). The red lines are the quantiles of the uniform distribution, and the blue marked
dots are the quantiles of the sorted PIT residuals.

From the bottom part of Table 6, we can conclude that SSMP
and MACP(1, 1) better describe the count data compared with
LP and MINAR(1). For SSMP, in every dimension its residual
mean is close to zero and its variance is close to one. Its lag 1
autocorrelation matrix has almost zero values. The Ljung–Box
statistics for the residuals and their substantial p-values also
demonstrate their serial independence to some degree. For
MACP(1, 1), its residuals also have almost zero mean and
unit variance; however, they tend to be slightly autocorrelated
with the Ljung–Box statistic Q3 for the second dimension
bigger than the p- value of the 95% confidence interval. For
the other two models, the results are even worse, with their
residuals significantly autocorrelated. To further check the
distributional assumptions of SSMP and MACP(1, 1), we use
the “randomized” version of the Probability Integral Transform
(PIT) proposed by Liesenfeld et al. (2008) for diagnosis (Jung
et al., 2011). If a model is correctly specified, its randomized
PIT values should follow the standard uniform distribution.
Figure 5 shows the corresponding quantile—quantile plots of
the randomized PIT values for SSMP andMACP(1, 1). The PIT
values of SSMP in every dimension nearly coincide with the 45°
line, indicating their similarity to the uniform distribution. The
formal Kolmogorov–Smirnov (KS) test for every dimension
also does not reject the uniformity assumption, although the
plots of MACP(1, 1) derive more from the 45° line, with the
KS tests rejecting the uniformity assumption. All in all, these
results show that SSMP provides a much better description of
the dynamic interactions of the count data than the other three
models.

5. Concluding remarks

Although multivariate time series of counts are very common
in practice, models to describe them allowing for flexible
cross-correlation and autocorrelation structures are yet to
be addressed. To fill this gap, this article proposes an easy-
to-interpret state space model to describe autocorrelated
multivariate counts. This model can represent the contempora-
neous and serial correlations of counts in a flexible way and also
capture the overdispersion. Hence, this model provides a useful
framework for multivariate count series analysis. A stable and
efficient estimation procedure for this model is provided based
on the MCEM algorithm together with PF and PS methods.
PF can also track the latent states of the model accurately in a
sequential way at the cost of a small computational complexity.
Comparisons with other state-of-the-art models of multivariate
counts demonstrate the superiority and more generality of our
proposed model. This point is also illustrated by applying the
proposedmodel to a real dataset from the power utility industry.

Along this research direction, we can next explore the follow-
ing aspects. First, athough efficient Statistical Process Control
(SPC) for autocorrelated multivariate counts is in high demand,
to the best of our knowledge, there is no work targeted on it.
Our proposed model may shed light on this field by construct-
ing an SPC scheme to monitor model parameters. Second, in
some applications count data involve spatial information and
are further spatially correlated. It will be interesting to extend
the current model by taking the spatial interdependence of
count data into consideration; i.e., construct a multi-layer time
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series model that aims to analyze not only the lead-lag relations
within and between different time series but also those within
and between different spatial layers. Last but not least, from the
implementable point of view, it is reasonable to consider how to
deal with missing data or how to add regression covariates into
the model for a better explanation of count data.
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Appendixes

A.1 Themoment properties of SSMP

A.. Mean
The mean of Yt is

E(Yt ) = E [E(Yt |Xt )] = E[exp(Xt )] = exp
(

μ + 1
2
�

)
, (A1)

with

E(Yti) = exp
(

μi + 1
2
�ii

)
. (A2)

A.. Covariancematrix
The variance of Yt is

Var [Yt ] = E [Var(Yt |Xt )] + Var [E(Yt |Xt )]

= E
[
diag(exp(Xt ))

] + Var
[
exp(Xt )

] ; (A3)

therefore,

Var(Yti) = E(Yti) + e2μi+�ii (e�ii − 1),
Cov(Yti,Yt j) = eμi+μ j+ 1

2 (�ii+� j j )(e�i j − 1).

A.. Autocorrelation structure
The autocorrelation of Yt is

Cov(Yt ,Yt−τ ) = E [Cov(Yt ,Yt−τ )|Xt ,Xt−τ ]

+Cov [E(Yt |Xt ),E(Yt−τ |Xt−τ )]

= Cov(exp(Xt ), exp(Xt−τ )), (A4)

because of

E [Cov(Yt ,Yt−τ )|Xt ,Xt−τ ] = 0,

then we have

Cov(Yti,Y(t−τ ) j) = Cov(exp(Xti), exp(X(t−τ ) j))

= E[exp(Xti) exp(X(t−τ ) j)]

−E[exp(Xti)]E[exp(X(t−τ ) j)]

= E[exp(Xti + X(t−τ ) j))]

−E[exp(Xti)]E[exp(X(t−τ ) j)]

= exp(μi + μ j)

× {
E[exp(Xit − μi + X(t−τ ) j − μ j)]

− exp
(

�ii

2
+ � j j

2

)}
. (A5)

Since

Xt − μ = 
(
(Xt−2 − μ) + εt−1) + εt

= 
τ (Xt−τ − μ) + 
τ−1εt−τ+1 + · · · + 
1εt−1 + εt ,

we define φτ−k
i = [φτ−k

i,1 , . . . , φτ−k
i,d ]′ as a row vector which rep-

resents the ith row of 
τ−k. Then

Xti + Xt−τ j − μi − μ j = φτ
i (Xt−τ − μ) + φτ−1

i εt−τ+1 + · · ·
+ φ1

i εt−1 + eiεt + Xt−τ j

We define φ∗τ
i = [φτ

i,1, . . . , φ
τ
i, j + 1, . . . , φτ

i,d]
′, then

Xti + Xt−τ j − μi − μ j = φ∗τ
i (Xt−τ − μ) + φτ−1

i εt−τ+1 + · · ·
+ φ1

i εt−1 + eiεt ,

and, consequently,

E[exp(Xti + X(t−τ ) j − μi − μ j)] = E[exp(φ∗τ
i (Xt−τ − μ))]

× E[exp(φτ−1
i εt−τ+1)]

× E[exp(φ1
i εt−1)]

× E[exp(εi,t )].

According to the moment-generating function of the multivari-
ate normal distribution, if X ∼ N(μ,�), then the moment-
generating function is given by mx(t) = E{exp(t′X)} =
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exp(t′μ + 1
2 t

′�t). Then we have

E
[
exp(Xti + X(t−τ ) j − μi − μ j)

]

= exp
(
1
2
φ∗τ ′
i �(0)φ∗τ

i + 1
2
φτ−1′
i �φτ−1

i + · · ·

+ 1
2
φ1′
i �φ1

i + 1
2
�ii

)
. (A6)

Plug Equation (A5) into Equation (A6). Finally, we have the
covariance of Yti and Yt−τ j. Then the autocorrelation could be
obtained by

ρ(Yti,Y(t−τ ) j) = Cov(Yti,Y(t−τ ) j)√
Var(Yti)Var(Y(t−τ ) j))

. (A7)

A.2 TheMCEMalgorithm based on PF & PSmethods

For the M step, to get

�∗ = argmax
�

Q(�∗,�), (A8)

we need take the gradient of Q̂(�∗,�) with respect to�∗; that
is,

∂Q̂(�∗,�)

∂�∗ =
T−1∑
t=1

Np∑
i=1

Np∑
j=1

Wij
t,t+1|T

∂ log p�∗ (x j
t+1|xit )

∂�∗ .

(A9)

By rewriting Equation (10) as

Xt+1 = �Xt + (I − �)μ + εt = �Xt + c + εt , (A10)

where c = (I − �)μ and dropping the constant, we have

log p�∗ (Xt+1|Xt ) = − log |�∗| − 1
2
(Xt+1 − �∗Xt − c∗)′�∗−1

×(Xt+1 − �∗Xt − c∗)

= − log |�∗| − 1
2
(Xt+1 − 
∗Zt )

′�∗−1

×(Xt+1 − 
∗Zt )

= − log |�∗| − 1
2
tr

×((Xt+1 − 
∗Zt )
′�∗−1

×(Xt+1 − 
∗Zt )), (A11)

where 
∗ = [c∗,�∗]′, and Zt = [1,Xt ].
Taking the derivative of log p�∗ (Xt+1|Xt ), we have

∂ log p�∗ (Xt+1|Xt )

∂
∗ = �∗−1(Xt+1Z′
t − 
∗ZtZ′

t ),

∂ log p�∗ (Xt+1|Xt )

∂�∗−1 = �∗

2
− 1

2
(Xt+1 − 
∗Zt )

×(Xt+1 − 
∗Zt )
′. (A12)

Therefore, we have

∂Q̂(�∗,�)

∂
∗ = �∗−1
T−1∑
t=1

Np∑
i=1

Np∑
j=1

Wij
t,t+1|T

×
(
x j
t+1 − 
∗zit

)
zi

′
t = 0,

∂Q̂(�∗,�)

∂�−1∗ = T − 1
2

�∗ − 1
2

T−1∑
t=1

Np∑
i=1

Np∑
j=1

Wij
t,t+1|T

×
(
x j
t+1 − 
∗zit

) (
x j
t+1 − 
∗zit

)′
= 0,

(A13)

with its solution


∗ = [(I − �∗)μ∗,�∗]′ =
⎛
⎝T−1∑

t=1

Np∑
i=1

Np∑
j=1

Wij
t,t+1|Tx

j
t+1z

i′
t

⎞
⎠

×
⎛
⎝T−1∑

t=1

Np∑
i=1

Np∑
j=1

Wij
t,t+1|Tz

i
tz

i′
t

⎞
⎠

−1

, (A14)

and

�∗ = 1
T − 1

(

T−1∑
t=1

Np∑
i=1

Np∑
j=1

Wij
t,t+1|T

(
x j
t+1 − 
∗zit

)

×
(
x j
t+1 − 
∗zit

)′
. (A15)
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