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Robust Multivariate Control Chart
Based on Goodness-of-Fit Test

CHEN ZHANG and NAN CHEN

Department of Industrial and Systems Engineering, National University of Singapore

CHANGLIANG ZOU

Institute of Statistics and LPMC, Nankai University

This paper proposes a distribution-free multivariate statistical process control (MSPC) chart to detect

general distributional changes in multivariate process variables. The chart is deployed based on a multi-

variate goodness-of-fit test, which is extendible to high-dimensional observations. The chart also employs

data-dependent control limits, which are computed on line along with the charting statistics, to ensure
satisfactory and robust charting performance of the proposed method. Through theoretical and numerical

analyses, we have shown that the proposed chart is exactly distribution-free and able to operate with an

unknown in-control (IC) distribution or limited reference samples. The chart also has robust IC perfor-

mance as well as satisfactory out-of-control (OC) detection power for general process changes without

any assumption of the process distribution. A real-data example in semiconductor production processes is

presented to demonstrate the application and effectiveness of our method.

Key Words: Distribution Free; Empirical Distribution; Multivariate Statistical Process Control; Nonpara-

metric; Self-Starting.

1. Introduction

M
ODERN MANUFACTURING PROCESSES usually in-
volve several related quality variables and de-

mand effective multivariate statistical process control
(MSPC) to improve their competitive advantages.
MSPC originates from the Hotelling’s T 2 chart,
which monitors the mean vector of multiple process
variables following the multivariate normal distribu-
tion. Since then, MSPC charts have been shown to
be more effective in monitoring correlated process
variables than multiple univariate SPC charts and,
hence, have attracted significant attention. Subse-
quent developments include multivariate cumulative
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sum (CUSUM) charts (Crosier (1988), Healy (1987),
Pignatiello (1990)) and multivariate exponentially
weighted moving averag (EWMA) charts (Lowry et
al. (1992), Runger and Prabhu (1996)) to improve
the charting performance of detecting small mean
shifts.

While many MSPC charts are designed or perform
best to detect mean shifts of quality variables in a
process, it has been well acknowledged that “changes
in the process mean are occasionally accompanied
with or might be masked by an unsuspected change
in the process variability” (Zamba and Hawkins
(2009)). As a consequence, several charts have been
proposed to monitor the process variance or the
covariance matrix, including the generalized vari-
ance method (Montgomery and Wadsworth (1972)),
the generalized likelihood ratio (GLR) method (Alt
(1985), Hawkins and Maboudou-Tchao (2008)), and
the penalized likelihood method (Yeh et al. (2004)).

Recently, charts that can monitor both the mean
vector and the covariance matrix simultaneously
have received increasing attention in the literature.
They can be classified into two categories. The first
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140 CHEN ZHANG, NAN CHEN, AND CHANGLIANG ZOU

category uses two separate charting statistics to de-
tect shifts in the process mean vector and the co-
variance matrix, respectively, and combines them
into a single statistic by appropriate transforma-
tions. Examples in this category include Chen et al.
(2005), Yeh et al. (2005), Yeh and Lin (2002), Khoo
(2004), Reynolds and Cho (2006), and Maboudou-
Tchao and Hawkins (2011). The second category con-
structs a single charting statistic directly that can
respond to both mean shifts and covariance matrix
shifts effectively. For instance, Hawkins (1991) pro-
posed a CUSUM chart based on regression-adjusted
variables; Zamba and Hawkins (2009) formulated a
change-point detection model based on the GLR test;
Zhang et al. (2010) employed the EWMA strategy on
the GLR statistic to achieve fast responses to differ-
ent types of shifts.

Despite their significance in MSPC, the aforemen-
tioned methods often need to assume that process
variables follow the multivariate normal distribution
or some other known distributions, at least when the
process is in control. Unfortunately, these distribu-
tional assumptions are frequently violated in prac-
tice, especially when the dimension p is large, be-
cause many data exhibit features (e.g., heavy tails
or skewness) that are distinct from conveniently as-
sumed distributions. More important, many charts
fail to perform well when the distributional assump-
tions are not satisfied (Qiu 2008; Woodall 2000). To
address this problem, control charts based on non-
parametric statistics can be useful. These nonpara-
metric charts have robust performance in different
distributions in the presence of outliners. Qiu and
Hawkins (2008) developed a CUSUM chart based
on the anti-ranks among different dimensions within
each sample. Qiu (2008) proposed a CUSUM chart
based on a log-linear model. Zou and Tsung (2011)
introduced the concept of spatial signs to MSPC, and
obtained a distributionally robust multivariate sign
EWMA chart. Holland and Hawkins (2014) proposed
a quarantined change-point model based on direc-
tional rank test statistics. Liu (1995) and Liu et al.
(2004) proposed several charts based on data depth.
Recently, there are also several developments that
formulate MSPC as a classification problem to deter-
mine whether the observed samples belong to the in-
control (IC) “class” or out-of-control (OC) “class”.
They use different classification methods, which do
not rely on any distributional assumptions as well
(see Sun and Tsung (2003), He and Wang (2007),
Sukchotrat et al. (2009), Hwang et al. (2007), Deng
et al. (2012), for examples).

Even though these nonparametric charts perform
robustly in detecting changes across different types
of data distributions, they are not distribution free.
By distribution free, we mean without knowing the
exact IC distribution or requiring a sufficiently large
size of IC samples, a chart can attain the specified
IC run-length distribution or at least IC average run
length (ARL0). Unfortunately, unlike many univari-
ate nonparametric charts (see Zou and Tsung (2010),
Chakraborti et al. (2001), for examples and reviews),
which are both robust and distribution free, it is chal-
lenging to design a distribution-free MSPC scheme
based on these conventional constructions. For ex-
ample, the multivariate sign EWMA chart of Zou
and Tsung (2011) requires at least 4,000 IC sam-
ples to attain a specified ARL0 when monitoring five-
dimensional data with an unknown distribution. Not
surprisingly, it requires increasingly more IC samples
as the dimension increases. The similar problem ex-
ists in other multivariate nonparametric charts (Zou
et al. (2012)). However, in many industrial applica-
tions, knowledge of the IC distribution or a large
group of IC samples is infeasible or challenging to ob-
tain. In these cases, the inaccurate estimation of the
IC distribution (or its parameters) from limited sam-
ples can significantly compromise the charting per-
formance (Jones et al. (2001)).

To (partially) mitigate the effects of limited IC
samples, especially at the start-up stage, various
self-starting control charts have been proposed. In
essence, self-starting charts sequentially monitor the
process and update the IC distribution parameters
using the newly observed samples if they are deemed
to be in control. They also adjust the control limits
such that the conditional false-alarm rate meets the
specification even at the early stage with limited sam-
ples. For instance, Hawkins and Maboudou-Tchao
(2007) and Maboudou-Tchao and Hawkins (2011)
proposed two EWMA charts with self-starting fea-
tures to monitor the mean vector and the covariance
matrix. Zamba and Hawkins (2009) used a change-
point model for MSPC. However, these three meth-
ods perform satisfactorily only when the data follow
the multivariate normal distribution. Later, Zou et
al. (2012) proposed a self-starting nonparametric ap-
proach based on spatial ranks. It has robust IC per-
formance and satisfactory OC performance. It even
enjoys the distribution-free property when the data
come from the elliptical distribution family. However,
its performance for other distributions is not guaran-
teed. See also Holland and Hawkins (2014) for a re-
lated approach based on change-point models. To the
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best of our knowledge, there lacks an MSPC chart
that has satisfactory performance regardless of the
data distribution type and dimension, even with lim-
ited IC samples.

To fill in the research gap, this paper aims to
develop a nonparamemtric MSPC chart with both
objectives in mind. First, the chart should be able
to detect general changes in the multivariate dis-
tribution effectively, including changes in the mean
vector, the covariance matrix, and the distribution
shapes. Second, the chart should be distribution free
with robust performance even with limited IC (ref-
erence) samples. There are several challenges asso-
ciated with both objectives. To detect general dis-
tributional changes, it is insufficient to monitor each
marginal distribution separately and combine the in-
formation together. Monitoring marginal distribu-
tions only fails to detect the changes in the corre-
lation structure. On the other hand, when the di-
mension p is large, it is prohibiting to estimate the
distribution or even its covariance matrix well due to
the curse of dimensionality and contamination noise
(Feng et al. (2013)). Moreover, existing charts are
not able to ensure the distribution-free property un-
der general MSPC settings.

In this paper, we propose a new MSPC chart based
on a goodness-of-fit (GoF) test. Instead of monitor-
ing marginal distributions separately or monitoring
the entire joint distribution directly, we construct the
charting statistic through a series of bivariate GoF
tests. Each test is designed to detect general distri-
butional changes in the bivariate distribution of a
selected pair of process variables. Then, by integrat-
ing the change information of a collection of bivariate
distributions, the proposed chart is able to detect a
much broader category of changes and is computa-
tionally efficient. For different distributional changes,
the optimal pair selection mechanisms are different.
We also provide some guidelines on how to select
the pairs for different purposes. The bottom line is
that, through the standard pair selection, the chart
is omnipotent for general distributional changes. In
addition, to achieve robust IC performance with un-
known distributional information or limited IC ref-
erence samples, we develop a novel data-dependent
control limit scheme. This scheme, along with each
monitoring statistic, determines the control limit at
each step on line. Leveraging on the permutation
principle, the scheme can deliver distribution-free IC
performance, meaning that the IC run-length distri-
bution can meet the specification regardless of the IC

distribution. We also design many numerical studies
to demonstrate the satisfactory performance of our
proposed chart.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the multivariate goodness-
of-fit test for MSPC. Section 3 presents the
distribution-free chart based on the GoF test; Section
4 evaluates the charting performance and compares
it with some alternative approaches; Section 5 pro-
vides some practical guidelines on the optimal pair
selection for different distributional changes. Section
6 demonstrates the proposal using a real-data exam-
ple from a semiconductor production process; Finally
Section 7 concludes this paper with remarks. Some
technical details are provided in Appendix.

2. Goodness-of-Fit Test

In this section, we first review the univariate GoF
test. Subsequently, we propose a new GoF test for
multivariate distributions.

2.1. A Powerful Univariate Goodness-of-Fit
Test

Let Sn = {X1, . . . ,Xn} be independent and iden-
tically distributed (i.i.d) samples from a distribution
with cumulative distribution function (CDF) F (t). It
is of interest to test whether X follows a specific dis-
tribution F0(t). It is equivalent to test the following
hypothesis:

H0 :F (t) = F0(t), forall t ∈ (−∞,∞),
H1 :F (t) 
= F0(t), for some t ∈ (−∞,∞). (1)

Without strong assumptions on F0(t) or F (t), many
nonparametric tests have been proposed, includ-
ing the Kolmogorov–Smirnov test, the Anderson–
Darling test, and the Cramér-von Mises test (see
Conover (1999) for an overview and references). De-
spite the differences in the original accounts of these
tests, Zhang (2002) proposed a new testing frame-
work to include them as special cases. Moreover,
based on this framework, Zhang (2002) also proposed
a new class of powerful GoF tests based on nonpara-
metric likelihood ratio (NLR) statistics.

In more details, the original null hypothesis can
be transformed to the null hypothesis Hτ

0 : F (τ) =
F0(τ), for all τ ∈ (−∞,∞). The later can be formu-
lated as testing the success rate of a binomial dis-
tribution, i.e., H ′τ

0 : p ≡ P (X ≤ τ) = F0(τ). This
problem is well studied and can be readily solved by
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the likelihood-ratio test given the samples Sn, i.e.,

L(τ) = n

{
F̂n(τ) ln

F̂n(τ)
F0(τ)

+ (1 − F̂n(τ)) ln
1 − F̂n(τ)
1 − F0(τ)

}
, (2)

where F̂n(τ) = n−1
∑n

i=1 I(Xi ≤ τ) is the empirical
distribution function (ECDF) based on Sn. I(·) is
the indicator function, which equals one when the
condition is true and zero otherwise.

According to the construction, L(τ) is always non-
negative. Moreover, when Hτ

0 is false, L(τ) is ex-
pected to be large. As a consequence, we can test
H0 in (1) by aggregating the information at all
τ ∈ (−∞,∞). Zhang (2002) recommended Z =∫∞

−∞ L(τ)dw(τ), where w(τ) is a pre-specified weight
function. With a properly chosen w(τ), Z could be a
very powerful test statistic compared with many ex-
isting methods. One w(τ) proposed by Zhang (2002)
is dw(τ) = [F̂n(τ)(1−F̂n(τ))]−1dF̂n(τ). More impor-
tantly, Z has the same null distribution not depend-
ing on F0(t), making it a useful nonparametric and
robust test statistic.

2.2. A New Multivariate Goodness-of-Fit Test

Although the univariate GoF test has been proven
to be effective and powerful, its direct extension to
multivariate distributions is challenging. This is be-
cause estimating the multivariate ECDF function, es-
pecially when the dimension p is large, is prohibiting
with limited samples. In this part, we propose an al-
ternative construction of the multivariate GoF test
based on NLR statistics.

Let Sn = {X1, . . . ,Xn}, X ∈ Rp be i.i.d. sam-
ples from a p-dimensional multivariate distribution
with CDF F (t), t ∈ Rp. The variable in the jth di-
mension, Xi,j , has the marginal CDF Fj(t), t ∈ R. A
natural and simple idea is to construct p univariate
GoF tests for each dimension separately, and com-
bine the test statistics together in a meaningful way.
However, this construction ignores the relationship of
these p variables. While it might be useful for detect-
ing changes in marginal distributions, it is ineffective
in detecting changes in the correlation structure. As
a result, we need to strike a balance between the
detection capability and the distribution dimension-
ality. Our idea is to construct a testing statistic for
the p-dimensional distribution based on a series of bi-
variate GoF tests. Each bivariate test is designed for
two selected dimensions, to detect changes in both

marginal distributions and their correlation. There-
fore, collectively, the proposed test is able to detect
a much larger class of deviations from the null dis-
tribution. In the following, we first elaborate on how
to construct the bivariate GoF test and later discuss
how to combine the bivariate test results together.

To begin with, we consider the joint distribu-
tion of [Xi,j ,Xi,k], with CDF Fjk(τ ), to illustrate
the idea, where τ = [τ1, τ2] ∈ R2 is a bivariate
point on the real plane. Similar to the univariate
NLR construction, for any given τ , the set of sam-
ples Sn are partitioned into four disjoint regions ac-
cording to whether Xi,j (Xi,k) is smaller than τ1
(τ2) or not (illustrated in Figure 1). Under Hτ

0 ,
the numbers of samples [Xi,j ,Xi,k] in each of the
four regions follow a multinomial distribution, with
probabilities P r

0,jk(τ ), r = 1, 2, 3, 4 shown in Fig-
ure 1, where P 1

0,jk(τ ) = P (Xi,j ≤ τ1,Xi,k ≤ τ2),
P 2

0,jk(τ ) = P (Xi,j > τ1,Xi,k ≤ τ2), P 3
0,jk(τ ) =

P (Xi,j ≤ τ1,Xi,k > τ2), and P 4
0,jk(τ ) = P (Xi,j >

τ1,Xi,k > τ2) under F0. As a consequence, testing
the hypothesis H0 : Fjk(τ ) = F0,jk(τ ) for all τ ∈ R2,
is equivalent to testing the probabilities of the multi-
nomial distribution. In more detail, we use P̂ r

jk(τ ) to
denote the counterpart of P r

0,jk(τ ) for r = 1, 2, 3, 4
based on the ECDF F̂jk(τ ) = n−1

∑n
i=1 I(Xi,j ≤

τ1,Xi,k ≤ τ2). Following the likelihood ratio princi-
ple, the bivariate NLR statistic can be expressed as

Tjk(τ ) = n
4∑

r=1

P̂ r
jk(τ ) ln

P̂ r
jk(τ )

P r
0,jk(τ )

. (3)

Again Tjk(τ ) is nonnegative and expected to be
large when Hτ

0 is false. Then Tjk(τ ) at different
τ can be aggregated by maximization or integra-
tion, e.g., Zjk =

∫
τ
Tjk(τ )dwjk(τ ). Analogue to

the choice of w(t) in the univariate case (Zhang
(2002), Zou and Tsung (2010)), we use dwjk(τ ) =
[
∏4

r=1 P̂
r
jk(τ )]−1/4dF̂jk(τ ) in this paper. In fact,

the determinant of the Fisher information ma-
trix in estimating (P 1

0,jk, P
2
0,jk, P

3
0,jk, P

4
0,jk) is sim-

ply
∏4

r=1 P̂
r
0,jk(τ ), to have higher off-center weights,

which leads to

Zjk =
n∑

i=1

[
4∏

r=1

P̂ r
jk(Xi,jk)

]−1/4

×
4∑

r=1

P̂ r
jk(Xi,jk) ln

P̂ r
jk(Xi,jk)

P r
0,jk(Xi,jk)

, (4)

where Xi,jk = [Xi,j ,Xi,k] is the subvector of the
ith sample. We want to stress that different weight
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FIGURE 1. Illustration of Bivariate Nonparamemtric

Likelihood-Ratio Test.

functions are also possible. Our choice here can bal-
ance the detection of different types of shifts. Other
weights and their corresponding performance are also
discussed in the supplementary material available
upon request.

From the bivariate GoF test for the j, kth dimen-
sion of X, we can construct a GoF test for the en-
tire p-dimensional distribution. In particular, we se-
lect a set of pairs P = {(j1, k1), . . . , (jq, kq)}, where
1 ≤ ji, ki ≤ p, ji 
= ki, i = 1, . . . , q. Note that Zjk ≥ 0
and is large when H0 is false. We can aggregate the
bivariate test results together by Z =

∑
(j,k)∈P Zjk.

As a result, Z becomes large when the bivariate dis-
tribution of any pair belonging to P shifts from that
specified by F0(t). As a result, Z is able to detect
changes not only in marginal distributions, but also
in certain correlations. Even though Z might not
cover all the correlations of the p dimensions, the
undercoverage can be mitigated by an appropriate
design of P. Some guidelines are provided in Section
5 on how to construct P for different purposes.

Unlike the univariate GoF test, the null distribu-
tion of Z depends on F0(t) and P. In fact, with-
out estimating and utilizing the covariance matrix of
X, the test statistic is not affine invariant. In this
sense, the proposed multivariate GoF test statistic
Z is not distribution free. In other words, we cannot
find a constant c such that under H0, P (Z > c) ≤ α
for all p-dimensional distributions F0(t). Neverthe-
less, in this one-sample test problem, we can al-
ways find a cut-off value c(α,F0, n) such that P (Z >
c(α,F0, n)) ≤ α under a certain F0(t). Clear from
the notation, the cut-off value depends on F0 and

the sample size n. c(α,F0, n) can always be approxi-
mated through sampling from F0.

3. A Distribution-Free
Multivariate Control Chart

Based on the multivariate GoF test developed in
Section 2.2, we can construct the MSPC chart to
sequentially monitor the distributional changes in
X. We follow the conventional change-point formu-
lation of the MSPC problem. In particular, we as-
sume that there are m0 i.i.d. reference observations
(or IC samples interchangeably) when the process
is in control, i.e., X−m0+1, . . . ,X0 ∈ Rp. In the
monitoring stage, the subsequent ith observation,
Xi = (X1i, . . . ,Xpi)T , is collected over time follow-
ing the change-point model

Xi
i.i.d.∼

{
F0(t) for i = −m0 + 1, . . . , 0, 1, . . . , ξ,
F1(t), for i = ξ + 1, . . . ,

(5)
where ξ is the unknown change point. F0 and F1

are the IC and OC distribution functions, respec-
tively, and assumed to be continuous. Our aim is to
construct a robust charting procedure based on the
multivariate GoF test to detect the change point ξ
as early and accurately as possible, without strong
assumptions on either F0 or F1. When F0 is un-
known and m0 is relatively small, the test statis-
tic based on Eq. (4) is not directly applicable for
two main reasons. First, the probabilities P r

0,jk(τ ),
r = 1, . . . , 4 are unknown. Second, the distribution
of the test statistic Z and the corresponding cut-
off value c(α,F0, n) cannot be accurately obtained
through sampling. Both challenges need to be ad-
dressed to deploy the charting scheme based on the
multivariate GoF test.

3.1. Construction of Charting Statistics

We first sequentialize the test procedure in Sec-
tion 2.2 when m0 is limited. In such cases, we can
estimate P r

0,jk(τ ), r = 1, . . . , 4 based on the m0

IC reference samples and update the estimates se-
quentially in a self-starting way. Particularly, when
the chart has not signalled an OC alarm up to the
nth sample, the previous n− 1 samples can be con-
sidered as IC samples. Together with the m0 ref-
erence samples, they can be used to estimate the
IC distribution by the ECDF function F̂n

0,jk(τ ) =
(m0 + n − 1)−1

∑n−1
i=−m0+1 I(Xi,j ≤ τ1,Xi,k ≤ τ2),

and the correspondingly probabilities in each region
(see Figure 1) by frequencies, denoted as P̂n,r

0,jk(τ ),
r = 1, . . . , 4.
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In addition, to improve the detection performance
on small shifts and to reduce the computational load,
we adopt the window limited exponential weighting
strategy (see Zou and Tsung (2010), Stoumbos and
Sullivan (2002), for examples). Essentially, we con-
sider the w most recent samples as potential OC
samples and weight them exponentially in computing
the counterparts of P̂ r

jk(τ ) in Eq.(2). Equivalently,
they can be estimated from the weighted ECDF
F̂n

jk(τ | λ,w) = a−1
λ,w

∑n
i=n−w+1(1 − λ)n−iI(Xi,j ≤

τ1,Xi,k ≤ τ2), where aλ,w =
∑n

n−w+1(1 − λ)n−i =
λ−1[1− (1−λ)w]. For notation simplicity, we denote
them at the nth sample as P̂n,r

jk (τ ;λ,w) to highlight
their dependence on λ,w. The revision of the test-
ing procedure is schematically illustrated in Figure
2, and the key elements in the test are summarized
below:

P̂n,1
0,jk(τ ) =

n−1∑
i=−m0+1

I(Xi,j ≤ τ1,Xi,k ≤ τ2)
m0 + n− 1

,

P̂n,1
jk (τ ;λ,w) =

n∑
i=n−w+1

(1 − λ)n−i

λ−1[1 − (1 − λ)w]

× I(Xi,j ≤ τ1,Xi,k ≤ τ2)

P̂n,2
0,jk(τ ) =

n−1∑
i=−m0+1

I(Xi,j > τ1,Xi,k ≤ τ2)
m0 + n− 1

,

P̂n,2
jk (τ ;λ,w) =

n∑
i=n−w+1

(1 − λ)n−i

λ−1[1 − (1 − λ)w]

× I(Xi,j > τ1,Xi,k ≤ τ2)

P̂n,3
0,jk(τ ) =

n−1∑
i=−m0+1

I(Xi,j ≤ τ1,Xi,k > τ2)
m0 + n− 1

,

P̂n,3
jk (τ ;λ,w) =

n∑
i=n−w+1

(1 − λ)n−i

λ−1[1 − (1 − λ)w]

× I(Xi,j ≤ τ1,Xi,k > τ2)

P̂n,4
0,jk(τ ) =

n−1∑
i=−m0+1

I(Xi,j > τ1,Xi,k > τ2)
m0 + n− 1

,

P̂n,4
jk (τ ;λ,w) =

n∑
i=n−w+1

(1 − λ)n−i

λ−1[1 − (1 − λ)w]

× I(Xi,j > τ1,Xi,k > τ2).

In practice, λ = 0.1 or 0.05 is the common choice
in EWMA-type charts and w is chosen such that (1−
λ)w is small, say 0.05. This window-limited statistic
barely influences the detection performance, but can
significantly reduce the computational load (see the
discussion and analysis later). After accommodating
these changes, the test statistic of Eq. (4) at the nth
sample becomes

Zn
jk(λ,w)

=
n∑

i=n−w+1

(1 − λ)n−i[∏4
r=1 P̂

n,r
jk (Xi,jk;λ,w)

]1/4

×
4∑

r=1

P̂n,r
jk (Xi,jk;λ,w) ln

P̂n,r
jk (Xi,jk;λ,w)

P̂n,r
0,jk(Xi,jk)

.

By aggregating the statistic for all the pairs in P, the
charting statistic becomes

Zn(λ,w) =
∑

(j,k)∈P
Zn

jk(λ,w). (6)

Even though Eq. (6) appears to be more complicated
than Eq. (4) in Section 2.2, they have similar compu-
tational complexity (see the discussion in Appendix).
For notation simplicity, we simply use Zn when there
is no confusion.

3.2. Data-Dependent Control Limits

The charting statistic of Eq. (6) indicates that,
when there are distributional changes from the IC
distribution F0, Zn is expected to be large. To make
the chart operational, we need to determine the con-
trol limits such that the chart has satisfactory IC and
OC performances.

Unfortunately, without knowing F0, it is diffi-
cult to find the limit c(α,F0, n) such that P (Zn >

FIGURE 2. Illustration of the EWMA-Based On-Line GoF Test.
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FIGURE 3. An Example of DFMGoF Chart. The black dots represent the charting statistic Zn and the red dots represent

the control limit Hn(α,Fm0+1). The chart triggered an OC alarm at n = 87.

c(α,F0, n)) ≤ α when all Xi ∼ F0, i = −m0 +
1, . . . , 0, . . . , n. On the other hand, we observe that
the charting statistic of Eq. (6) depends on the sam-
ples {X−m0+1, . . . ,X0, . . . ,Xn} only through the
ECDF, denoted by Fm0+n. Equivalently speaking,
the conditional distribution P (Zn | Fm0+n) is free
from F0. This conditional distribution-free prop-
erty provides an alternative avenue to determine
the control limits. In fact, because P (Zn | Fm0+n)
is free from F0, we can always find a quantity
Hn(α,Fm0+n) such that P (Zn > Hn(α,Fm0+n) |
Fm0+n) ≤ α. Note that Hn(α,Fm0+n) depends on
Fm0+n only. Hence it is a random variable but has
a fixed realization given Fm0+n. This implies that,
in different independent runs of the control chart,
we have different Fm0+n and correspondingly dif-
ferent realizations of Hn(α,Fm0+n). That means
the value of Hn(α,Fm0+n) depends on the samples
{X−m0+1, . . . ,X0, . . . ,Xn} at each step, therefore
given its name data-dependent limits.

In practice, we can design Hn(α,Fm0+n) such that
the chart has a prespecified ARL0. However, as rec-
ognized in the literature, it is often insufficient to
summarize the run-length behavior by ARL, espe-
cially for self-starting control charts (Hawkins and
Maboudou-Tchao (2007), Zou and Tsung (2010)).
It is more desired that the conditional false-alarm
rate is controlled at each step such that the IC run
length is geometrically distributed (Hawkins and Ol-
well (1998)). To achieve this ideal run-length distri-
bution, we can adjust the control limits so that the
conditional probability that the charting statistic ex-
ceeds the control limit at present given that there is

no alarm before is a prespecified constant α. Equiv-
alently, Hi(α,Fm0+i), i = 1, 2, . . . , needs to satisfy

P (Z1 > H1(α,Fm0+1) | Fm0+1) = α,

P (Zn > Hn(α,Fm0+n) |
Zi ≤ Hi(α,Fm0+i), 1 ≤ i < n,Fm0+n) = α (7)

for n > 1. Subsequently, we can formally define the
following charting procedure, termed as distribution-
free multivariate GoF chart (abbreviated as DFM-
GoF), with the run length

RL = min{n; Zn ≥ Hn(α,Fm0+n), n ≥ 1}. (8)

An example of the chart operation is shown in Fig-
ure 3 for illustration. Because of the conditional
distribution-free property of P (Zn | Fm0+n), the
conditional false-alarm rate α in Eq. (7) holds regard-
less of the IC distribution F0 or its dimension. As a
result, our construction ensures that P (RL = n) =
(1 − α)n−1α exactly, and correspondingly ARL0 =
1/α. This result is remarkable as it does not require
the distributional type or parameters of F0 and can
always ensure the desired IC run-length distribution
(see results in Section 4.1). It can also operate with
small m0, which is crucial in short-run processes and
mass-customerization applications.

Despite the existence of Hn(α,Fm0+n), forall
n ≥ 1 theoretically, it is often analytically in-
feasible to find them to satisfy Eq. (7). To
make the charting procedure practical and gen-
erally applicable, we propose a computational al-
gorithm to find Hn(α,Fm0+n), forall n ≥ 1.
The algorithm is based on the fundamental per-
mutation principle. In more detail, if the pro-
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cess has being in control until the nth sample,
Sn = {X−m0+1, . . . ,X0,X1, . . . ,Xn} are i.i.d. sam-
ples from the IC distribution F0. As a result, any
permuted Sν

n = {Xv−m0+1 , . . . ,Xv0 ,Xv1 , . . . ,Xvn},
where {v−m0+1, . . . , v0, v1, . . . , vn} is simply a ran-
dom permutation of the index set {−m0 +1, . . . , 0, 1,
. . . , n}, have the same distribution as Sn. As a re-
sult, the charting statistic Zn computed from Sn has
the identical distribution as Zν

n from the permuted
Sν

n. By generating a large number of permuted sam-
ples Sν

n and computing their corresponding charting
statistics Zν

n, for ν = 1, . . . , b, we are able to approx-
imate the conditional distribution P (Zn | Fm0+n)
through sample approximation. In particular, the de-
sired control limit can be approximated by the sam-
ple quantile. Because this computational procedure
is valid regardless of the IC distribution F0, the al-
gorithm can always ensure the validity of Eq. (7).
See Chen et al. (2015) for detailed theoretical anal-
yses. The idea can be formalized into the following
procedure:

(i) For n = 1, generate b permutations Sν
1 , ν =

1, . . . , b, independently from S1 and compute
their corresponding charting statistics, Zν

1 , ν =
1, 2, . . . , b. Find the (1 − α) sample quantile of
Zν

1 , ν = 1, . . . , b as H1(α,Fm0+1).

(ii) For n > 1 and a permutation Sν
n from Sn, com-

pute Zν
i for max{1, n−w+1} ≤ i ≤ n. If Zν

i ≤
Hi(α,Fm0+i) for all max{1, n−w+1} ≤ i < n,
accept Zν

n as a valid permutation statistic. Oth-
erwise, Sν

n is discarded and a new permutation
is drawn. Repeat this procedure until b valid
Zν

n are obtained and find the (1 − α) sample
quantile of Zν

n, ν = 1, . . . , b as Hn(α,Fm0+n).

In (ii), we only need to estimate the quantile of
P (Zn | Zi ≤ Hi(α,Fm0+i), max{1, n − w + 1} ≤
i < n, Fm0+n) instead of the one in Eq. (7) to re-
duce the computational complexity, especially when
n is large, because only the most w recent Zν

i of ev-
ery permutation need to be computed. A detailed
analysis of the algorithm complexity is discussed in
Appendix A.1.

The proposed procedure of finding Hn(α,Fm0+n)
is based on the permutation principle, which is dif-
ferent from the usual bootstrap method. Similar
to other permutation tests, the charting procedure
does not need any distributional assumption to have
the exact IC run-length distribution. This property
makes the proposed chart significantly different from
existing methods. In practice, a complete enumera-
tion of all permutations is infeasible. Random per-

mutations of size b = 10q/α should be sufficient for
reliable approximations, which, in turn, roughly re-
quires b/(1 − α)w permutation trials when n ≥ w.
As long as m0 and n are not too small and b is suffi-
ciently large, Eq. (7) holds well using the estimated
limits Hn(α,Fm0+n), n = 1, . . . , from the algorithm.

Satisfactory performance is possible because of
the data-dependent nature of the charting proce-
dure. In other words, after observing Xn, along with
Zn we need to determine the corresponding limit
Hn(α,Fm0+n) on line. This is fundamentally differ-
ent from the approach of dynamic control limits orig-
inally proposed by Margavio et al. (1995) and Lai
(1995), which still uses a fixed sequence of limits
for a given F0. However, these data-dependent limits
come at a cost of heavy computational load required
in the permutation procedure. However, this proce-
dure becomes still feasible as the high-performance
computing advances. For example, for a chart with
q = 5, b = 10000, and w = 58, at n = 100, it takes
5 seconds to calculate the charting statistic and the
corresponding limit on a computational node with 32
threads. For time-critical applications, more compu-
tational resources can be invested to speed up the
charting operation.

4. Simulation Studies

In this section, we present some simulation results
to demonstrate the performance of DFMGoF. Un-
fortunately, fair comparisons between DFMGoF and
alternative charts are difficult because DFMGoF is
designed to detect general distributional changes and
is self-starting, only requiring a small reference sam-
ple size. To this end, we consider two self-starting
charts that can monitor the mean vector and the
covariance matrix simultaneously, the self-starting
EWMAC chart (SSEWMAC; Maboudou-Tchao and
Hawkins (2011)) and the chart based on the change-
point model together with the GLR test (ChangePt;
Zamba and Hawkins (2009)). Both charts are de-
signed to detect either mean shifts or covariance ma-
trix shifts and are parametric, assuming that pro-
cess variables follow the multivariate normal distri-
bution. In addition, we also consider the chart based
on real-time contrasts (RTC; Deng et al. (2012)),
which is nonparametric but requires sufficient refer-
ence samples to attain the specified IC performance.
Most recently, Holland and Hawkins (2014) proposed
a nonparametric multivariate change-point model for
MSPC. It is robust and works well for the elliptical
distribution family. However, the chart is designed to
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detect mean shifts only and hence is not included for
the comparisons here.

To test the robustness of these charts, we consider
the following distributions in our numerical studies:
(i) multivariate normal; (ii) multivariate t with ζ de-
grees of freedom, denoted as tp,ζ ; (iii) multivariate
gamma with shape parameter ζ and scale param-
eter 1, denoted as Gamp,ζ . These distributions are
commonly used in the literature to study the ro-
bustness of charting performance. For easy reference,
random-number generation and useful moments of
these distributions are included in Appendix A.2. In
the simulation, we consider p = 10 and 30, repre-
senting low-dimensional and high-dimensional cases,
respectively. We set ARL0 = 200 and m0 = 100.
Clearly, such few reference samples are not able to
provide any meaningful estimate of the distributional
parameters when p = 10 or 30.

Without loss of generality, for each distribution,
the mean vector μ0 is set to be 0, the covariance ma-
trix Σ0 is chosen to be diagonal as σ2I. For DFM-
GoF, in every replicate, we simply choose the �p/2

most correlated pairs of X based on its m0 reference
samples to form its corresponding P. In addition,
we set w = 28 when λ = 0.1 and w = 58 when
λ = 0.05. For RTC, following the guidelines in Deng
et al. (2012), the random forest algorithm is used

to classify the IC samples and the on-line samples.
A group of 10 samples from either class are used to
train the classifier to get the charting statistic. In the
subsequent simulation results, the quantities are ob-
tained based on 10000 replicates without other notes.
Additional simulation results, including cases with
nondiagonal covariance matrices, are summarized in
the supplementary material available upon request.

4.1. In-Control Performance Comparison

We first compare their IC performance in terms of
ARL0, standard deviation of the run-length (SDRL),
and the false-alarm rate during the first 30 ob-
servations, i.e., FAR = P (RL ≤ 30). According to
(Hawkins and Olwell (1998)), the IC run-length dis-
tribution of a chart is satisfactory if it is close to
the geometric distribution. Correspondingly, if the
run-length distribution is geometric, with α = 0.005
and ARL0 = 200, we expect SDRL= 200 and
FAR= 0.140. Table 1 summarizes the IC perfor-
mance of these charts for different distributions and
dimensions. The control limits of SSEWMAC and
ChangePt are set assuming that the data follow the
multivariate normal distribution based on the meth-
ods in Maboudou-Tchao and Hawkins (2011) and
Zamba and Hawkins (2009). On the other hand, the
control limits of RTC are determined through resam-
pling from the m0 reference samples.

TABLE 1. IC Performance of the DFMGoF, RTC, ChangePt, and SSEWMAC Charts with Multivariate Normal,

tp,5, and Gamp,5 Observations when p = 10 and m0 = 100

λ = 0.1 λ = 0.05

Method ARL0 SDRL FAR ARL0 SDRL FAR
Geometric 200 200 0.140 200 200 0.140

Norm DFMGoF 199 199 0.142 192 192 0.147
SEWMAC 202 189 0.077 198 171 0.032
RTC 25.7 8.22 0.705 — — —
ChangePt 199 191 0.128 — — —

tp,5 DFMGoF 198 195 0.141 194 190 0.142
SSEWMAC 24.2 14.3 0.721 0.8 16.8 0.531
RTC 29 10.4 0.665 — — —
ChangePt 24.3 23.5 0.711 — — —

Gamp,3 DFMGoF 194 192 0.146 197 195 0.146
SSEWMAC 42.2 29.4 0.415 53.8 33.6 0.239
RTC 25.7 6.66 0.704 — — —
ChangePt 56.0 51.1 0.379 — — —
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(a) Multivariate normal

(b) Multivariate t5

(c) Multivariate Gam3

FIGURE 3. An Example of DFMGoF Chart. The black

dots represent the charting statistic Zn and the red dots rep-

resent the control limit Hn(α,Fm0+1). The chart triggered

an OC alarm at n = 87.

Table 1 shows that DFMGoF has satisfactory
IC performance. For every distribution, DFMGoF’s
ARL0 can attain the designed value 200 closely, and
its run-length distribution is close to the geometric
distribution based on the comparisons of its ARL0,
SDRL, and FAR with the ideal ones. On the other
hand, both ChangePt and SSEWMAC have satisfac-
tory ARL0s when X is multivariate normal. This is
not surprising because their control limits are ob-
tained under the normality assumption. However,
when X follows the tp,5 or Gamp,3 distribution, their
ARL0s are far smaller than 200, indicating that ex-
cessive false alarms are expected for nonnormal dis-
tributions. Table 1 also reveals that RTC has unsatis-
factory IC performance for all the three distributions.
This is because, to set the control limit correctly,
RTC requires knowing the exact distribution type
and parameters. If either is unknown, a large num-
ber of reference samples are required to obtain the

limit through resampling. Samples of size m0 = 100
are clearly insufficient to get the accurate limit, and
hence lead to unsatisfactory IC performance. In fact,
many other nonparametric MSPC charts share the
same problem: if the reference sample size is too
small, the IC performance is not guaranteed with-
out knowing the exact F0.

To further validate our conclusions, Figure 4 plots
the hazard rates of these IC run-length distribu-
tions. Ideally, if the run-length distribution is geo-
metric, the hazard rate is constant along the stream-
line. In contrast, elevated hazard rates at the begin-
ning often lead to excessive early false alarms. Figure
4 clearly demonstrates that regardless of the form
of F0, DFMGoF always has the geometrically dis-
tributed run-length distribution. While SSEWMAC
and ChangePt have satisfactory run-length distribu-
tions when X is multivariate normal, their distribu-
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tions are heavily distorted when X is different from
the multivariate normal distribution. This demon-
strates that DFMGoF is exactly distribution free and
has a satisfactory IC run-length distribution, as in-
dicated in Section 3. Its robust performance makes
it especially useful when m0 is small and F0 is un-
known.

4.2. Out-of-Control Performance Comparison

In this section, we compare the OC performance of
the four competing charts. Here we only consider the
steady-state ARL (SSARL), meaning that any series
where a signal occurs before the true change point ξ
is discarded. We fix ξ = 25 in all cases. Furthermore,
to have a fair comparison, we adjust the control limits
of all charts such that their ARL0 = 200 for each of
the three distributions considered. It should be noted
that this adjustment could only be used for simula-
tion comparisons, but not applicable in practice be-
cause the true IC distribution is usually unknown.

Similar to other MSPC studies, it is impossible to
enumerate all the change patterns to allow a full-scale
study of the charts’ performances. Following similar
studies in the literature (Zou and Tsung (2011), Zou
et al. (2012), Maboudou-Tchao and Hawkins (2011),
Zamba and Hawkins (2009)), here we consider three
scenarios as examples: (1) mean shifts in the first
�p/5� dimensions of size δ, i.e., μ1 = μ0 + δe with

e = (1, . . . , 1︸ ︷︷ ︸
1,...,�p/5�

, 0, . . . , 0)T;

(2) variance shifts in all the p dimensions of size δ,
i.e.,Σ1 = δΣ0; (3) correlation shifts in the first �p/5�
dimensions of size ρ, i.e., σi,i+1 = σi+1,i = ρ, for
i = 1, 3, . . . , �p/5 − 1�.
4.2.1. Comparisons in Detecting Mean Shifts

We compare their performance in detecting mean
shifts of size δ = 0.25, 0.5, 1, 2, 4 respectively. Ta-
ble 2 illustrates that DFMGoF outperforms the
other three charts when the shift size is small (δ =
0.25, 0.5) and has comparable detection performance
as RTC and SSEWMAC when the shift size is mod-
erate to large. On the other hand, ChangePt does
not perform satisfactorily compared with the other
three charts, especially when p = 30. From the com-
parison, DFMGoF is particularly good at detecting
small shifts. Similar observations have been made in
the univariate GoF chart (Zou and Tsung (2010)).

We also note that, in our simulation settings, the
charts generally have smaller OC ARLs when p = 30

than when p = 10 given the same δ. This is be-
cause the OC performance is largely determined by
the Mahalanobis distance of the shifted mean vector
from the IC one, i.e., Δ = (μ1 − μ0)Σ−1

0 (μ1 − μ0)
(see Maboudou-Tchao and Hawkins (2011) for a re-
lated discussion). Given the Σ0 and the change pat-
tern in our study, we have Δp=30 > Δp=10 given the
same δ. This can partially explain the better per-
formance when p = 30. Moreover, this also assures
us that, even if we only consider a specific change
pattern, the simulation results are representative as
long as another change pattern μ1 has the same Ma-
halanobis distance from μ0 as the current pattern.
As a result, it might not be necessary to compare ex-
haustive change patterns, especially for the elliptical
distribution family.

4.2.2. Comparisons in Detecting Variance Shifts

We first compare their performance in detecting
increases in variance of size δ = 1.25, 1.5, 2, 4. This
is often of more interest than decreases in variance
because the former generally leads to a larger num-
ber of nonconforming parts and indicates presence
of some assignable causes. (See Montgomery (1991)
for a detailed discussion.) As Table 3 summarizes,
when the distribution is multivariate normal, DFM-
GoF does not have advantages in the detection speed.
SSEWMAC, which is designed under the multivari-
ate normal assumption, has consistently better re-
sults. However, when X follows the tp.5 distribution,
SSEWMAC performs worse than DFMGoF. When
X follows the Gamp,3 distribution, the comparison is
intriguing. As noted in Appendix A.2, the increases
in variance of the shifted dimensions also lead to
the increases in the mean of them. As a result, all
charts have very good performance in detecting such
changes. Table 3 also shows that RTC has superior
performance across different types of distributions,
especially in detecting small to moderate shifts. How-
ever, this is mainly because that RTC is ARL-biased
in monitoring variance shifts. In other words, when
the variance decreases, RTC has a larger ARL than
ARL0.

To demonstrate this point, we compare their per-
formance in detecting decreases in variance, as shown
in Figure 5 for the 10-dimensional multivariate nor-
mal distribution. Simulations for other distributions
and other dimensions reveal similar results. Figure
5 clearly shows that the charts perform quite differ-
ently in detecting decreases in variance. In particu-
lar, RTC is not able to detect the shifts efficiently.
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TABLE 2. OC ARL Comparison in Detecting Mean Shifts when m0 = 100 and λ = 0.05.
Numbers in parentheses are SDRL values

p δ DFMGoF RTC ChangePt SSEWMAC

Norm 10 0.25 93.9 (144) 132 (144) 186 (187) 122(139)
0.5 36.1 (36.2) 51.8 (55.0) 134 (138) 70.3 (86.9)
1.0 12.4 (5.62) 12.1 (6.93) 36.4 (20.3) 11.6 (5.88)
2.0 5.83 (1.93) 6.23 (1.62) 12.4 (4.40) 4.04 (1.75)
4.0 3.93 (1.12) 4.72 (1.10) 4.81 (1.59) 1.59 (0.59)

30 0.25 83.1 (114) 100 (112) 186 (183) 87.8 (95.7)
0.5 20.6 (11.4) 24.7 (22.0) 148 (151) 22.9 (15.6)
1.0 8.40 (3.01) 7.62 (3.00) 52.9 (32.0) 9.09 (3.03)
2.0 4.08 (1.17) 4.82 (1.22) 23.9 (9.82) 4.60 (1.27)
4.0 2.74 (0.69) 3.90 (0.98) 12.2 (5.53) 2.37 (0.62)

tp,5 10 0.25 140 (161) 151.6 (191) 188 (183) 162 (166)
0.5 58.5 (79.5) 68.3 (80.9) 155 (158) 88.9 (109)
1.0 16.4 (8.50) 15.1 (11.6) 59.9 (46.0) 21.4 (15.4)
2.0 7.37 (2.64) 6.74 (1.80) 19.9 (8.23) 8.10 (2.94)
4.0 4.42 (1.26) 5.21 (1.35) 8.21 (3.16) 4.11 (1.24)

30 0.25 127 (155) 136 (164) 184 (181) 140 (133)
0.5 37.7 (45.7) 45.6 (50.9) 154 (166) 55.3 (63.6)
1.0 11.5 (4.52) 9.38 (3.93) 64.4 (46.3) 14.2 (5.36)
2.0 5.46 (1.64) 5.77 (1.52) 31.5 (15.0) 6.43 (1.87)
4.0 3.31 (0.84) 4.58 (1.17) 15.8 (8.53) 3.60 (0.97)

Gamp,3 10 0.25 88.3 (115) 147 (169) 188 (184) 137 (144)
0.5 26.8 (15.3) 59.3 (76.9) 152 (163) 67.2 (87.8)
1.0 13.2 (4.99) 10.5 (5.32) 52.9 (38.9) 17.4 (9.30)
2.0 7.27 (2.29) 6.43 (1.64) 17.2 (6.91) 7.39 (2.68)
4.0 4.57 (1.31) 5.05 (1.25) 6.87 (2.56) 3.40 (1.20)

30 0.25 43.4 (37.2) 126 (140) 183 (177) 109 (110)
0.5 17.2 (6.88) 28.4 (26.6) 159 (154) 35.7 (36.9)
1.0 9.20 (2.89) 7.43 (1.82) 62.5 (43.1) 11.9 (4.63)
2.0 5.16 (1.46) 5.25 (1.27) 27.8 (11.5) 5.72 (1.67)
4.0 3.30 (0.48) 4.13 (1.00) 14.7 (6.50) 2.85 (0.91)

In addition, DFMGoF performs better than SSEW-
MAC, which is contrary to the cases when variance
increases. As a result, it is important to recognize
the shifts that are of most importance. Without clear
preference, SSEWMAC and DFMGoF give more bal-
anced protection against unknown variance shifts.

4.2.3. Comparisons in Detecting Correlation Shifts

We also compare their performance in detecting
correlation shifts. Among various shift patterns, here
we focus on a pattern that is commonly used in the
literature (Zamba and Hawkins (2009)): the corre-

lation between two neighbor variables creeps into
the process with size ρ ranging from 0 to 1. In ad-
dition, only the correlations of the first [p/5] di-
mensions are changed to make the detection even
harder. Table 4 summarizes the OC ARLs of differ-
ent charts under different shift sizes and different dis-
tributions. It shows that DFMGoF consistently per-
forms best in almost all the scenarios. In contrast,
while SSEWMAC performs satisfactorily for the mul-
tivariate normal distribution, its performance dete-
riorates significantly when the distribution is non-
normal. ChangePt performs slightly better and more
robustly than SSEWMAC, though still not as well
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TABLE 3. OC ARL Comparison in Detecting Variance Shifts when m0 = 100 and λ = 0.05.
Numbers in parentheses are SDRL values

p δ DFMGoF RTC ChangePt SSEWMAC

Norm 10 1.25 114.6(130) 58.9(60.9) 176(178) 77.2(95.6)
1.5 52.3(63.9) 25.6 (22.7) 91.9 (87.4) 24.8 (32.0)
2.0 15.9 (10.2) 10.3 (5.59) 25.1 (13.2) 7.61 (4.90)
4.0 5.80 (2.51) 5.69 (1.78) 6.55 (2.98) 2.23 (1.11)

30 1.25 84.4 (109) 31.4 (39.5) 178 (183) 71.1 (92.9)
1.5 21.9 (20.6) 12.3 (7.81) 100 (88.6) 17.8 (20.6)
2.0 8.61 (4.40) 6.92 (2.48) 30.8 (14.9) 6.85 (2.28)
4.0 3.70 (1.37) 4.35 (1.39) 9.29 (3.28) 2.62 (0.49)

tp,5 10 1.25 119 (142) 71.4 (83.5) 153 (194) 125 (136)
1.5 67.9 (82.6) 37.4 (40.4) 86.5 (96.1) 80.9 (92.3)
2.0 24.7 (26.8) 15.6 (12.3) 34.2 (27.0) 37.5 (50.2)
4.0 7.97 (4.14) 6.98 (2.39) 9.17 (5.59) 7.75 (5.68)

30 1.25 91.9 (112) 51.5 (58.5) 147 (154) 125 (136)
1.5 41.5 (50.6) 24.8 (25.0) 82.2 (83.5) 80.8 (92.3)
2.0 15.1 (11.2) 10.7 (7.22) 36.7 (24.2) 37.5 (50.2)
4.0 5.54 (2.62) 5.77 (2.01) 11.3 (6.30) 7.75 (5.68)

Gamp,3 10 1.25 24.8 (19.0) 23.8 (20.7) 38.2 (31.7) 16.4 (12.9)
1.5 10.3 (4.57) 9.04 (3.81) 12.9 (7.11) 6.36 (3.77)
2.0 5.48 (2.05) 5.68 (1.81) 4.79 (2.59) 2.57 (1.41)
4.0 2.71 (0.76) 3.89 (1.20) 1.30 (0.50) 1.06 (0.24)

30 1.25 14.7 (7.04) 12.6 (7.34) 41.2 (23.3) 11.4 (5.71)
1.5 6.80 (2.56) 6.29 (1.97) 17.3 (7.43) 5.10 (2.04)
2.0 3.74 (1.18) 4.35 (1.25) 7.12 (2.68) 2.11 (0.85)
4.0 1.99 (0.52) 2.94 (0.86) 1.90 (0.65) 1.02 (0.18)

FIGURE 5. OC ARL Curses in Detecting Variance Shifts

for the Multivariate Normal Distribution with p = 10, m0

= 100, and λ = 0.05.

as DFMGoF. RTC almost has no detection power for
correlation shifts.

We have also conducted many other simulations
for different process shift patterns along with other
target ARL0s (370 and 500). Their results suggest
that the general observations and conclusions made
above still hold. These additional simulation results
are available from the authors upon request.

5. Guidelines on Pair Selection

In this section, we investigate how the pair selec-
tion influences the charting performance. As men-
tioned earlier, in MSPC, there are innumerable shift
patterns. Even for mean shifts only, it is difficult to
find a single method that is dominantly better than
the rest in detecting shifts in all directions in the
p-dimensional space. We can demonstrate that the
most appropriate pair selection in fact goes long with
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TABLE 4. OC ARL Comparison in Detecting Correlation Shifts when m0 = 100 and λ = 0.05.
Numbers in parentheses are SDRL values

p δ DFMGoF RTC ChangePt SSEWMAC

Norm 10 0.3 174 (188) 203 (215) 189 (176) 163 (171)
0.5 123 (138) 193 (220) 161 (158) 120 (125)
0.7 67.4 (77.9) 178 (195) 82.2 (64.0) 62.9 (56.3)
0.9 28.9 (13.6) 162 (174) 32.4 (14.6) 32.1 (14.0)

30 0.3 148 (158) 195 (207) 189 (185) 163 (147)
0.5 84.9 (96.8) 191 (209) 165 (168) 129 (128)
0.7 35.8 (24.9) 174 (187) 82.7 (55.9) 67.7 (44.3)
0.9 19.8 (7.51) 163 (178) 37.8 (14.2) 40.7 (12.8)

tp,5 10 0.3 168 (180) 192 (225) 189 (186) 184 (172)
0.5 133 (150) 197 (224) 149 (49.3) 183 (175)
0.7 77.0 (95.0) 188 (220) 83.2 (74.5) 177 (174)
0.9 31.2 (16.1) 171 (200) 36.7 (16.8) 138 (134)

30 0.3 158 (168) 204 (243) 184 (185) 179 (149)
0.5 107 (137) 189 (227) 139 (143) 174 (145)
0.7 48.7 (54.5) 181 (218) 75.9 (56.8) 172 (144)
0.9 22.8 (9.38) 188 (233) 41.4 (15.4) 132 (105)

Gamp,3 10 0.3 194 (197) 203 (231) 196 (185) 181 (173)
0.5 187 (183) 200 (212) 186 (186) 169 (166)
0.7 140 (142) 193 (212) 144 (147) 159 (162)
0.9 45.1 (38.5) 174 (201) 49.9 (30.3) 84.2 (82.5)

30 0.3 176 (179) 197 (211) 192 (190) 172 (150)
0.5 159 (159) 197 (208) 185 (178) 171 (147)
0.7 93.9 (106) 187 (205) 149 (152) 147 (132)
0.9 26.2 (12.6) 169 (180) 51.7 (31.2) 68.5 (44.1)

the shift pattern of most interest. Of course, in prac-
tice, we might not be able to have sufficient domain
knowledge in prioritizing the importance of differ-
ent shift patterns. However, the bottom line is that,
through the standard pair selection, our chart can de-
tect all the marginal mean or variance shifts as well
as certain correlation structure shifts. We illustrate
this point using some additional numerical results as
follows.

We consider a small-scale problem for illustration
purposes, which detects changes in the 4-dimensional
multivariate normal distribution. We enumerate all
possible pair combinations, which correspond to all
the nonempty subsets of P0 = {(x1, x2), (x1, x3),
(x1, x4), (x2, x3), (x2, x4), (x3, x4)}. Altogether, there
are 26 − 1 = 63 nonempty subsets (pair selections).
We set the IC mean vector μ0 = 0, the covariance
matrix Σ0 = (σij,0), with σii,0 = 1 and σij,0 =

0.3|i−j| for i 
= j, i, j = 1, 2, . . . , p. The OC scenar-
ios considered include (1) mean shift in x1 of size δ,
i.e., μ1 = μ0 + δe with e = (1, 0, 0, 0)T ; (2) vari-
ance shift in x1 of size δ, i.e., σ11,1 = δσ11,0; (3) shift
in the correlation between x1 and x2 of size ρ, i.e.,
σ12,1 = σ21,1 = ρ, where ρ changes from 0.3 to other
values. We set m0 = 100, λ = 0.05 and ARL0 = 200.

We first consider the charting performance of all
63 Ps for mean and variance shifts in x1. As Figure 6
shows, if a P does not have any pair of x1, such like
P = {(x2, x3)}, we denote it by a black dot curve
with cross marks. Otherwise we denote Ps by eight
different line styles and marks with respect to their
different proportions of pairs of x1, i.e., 1/4, 1/3, 1/2,
2/5, 3/5, 2/3, 3/4, 1. We can see that the charts with
no pairs of x1 cannot detect the shift in x1 at all,
while the other charts can detect the shift to some
degree. As a result, we can conclude that, as long
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(a) Mean shift (b) Variance shift

FIGURE 6. OC ARL Curves of the 63 Possible P for x1 Shifts with the Proportion of Pairs of x1 as 0, 1/4, 1/3, 1/2, 2/5,

3/5, 2/3, 3/4, 1.

as the chart includes at least one pair of the shifted
dimension, the chart has detection power for its mean
or variance shift.

Furthermore, as Figure 6 shows, the proportion of
pairs of x1 in P has influence on the charting per-

formance. Generally, the higher the proportion, the
better the detection power is. This is because the
lower proportion of pairs of x1 means more irrelevant
pairs involved in the chart. These irrelevant pairs will
introduce extra noise to the chart and consequently
deteriorate the detection power.

(a) Mean shift (b) Variance shift

FIGURE 7. OC ARL Curves of P = {(x1, x2)}, P = {(x1, x2),(x1, x3)}, and P = {(x1, x2),(x1, x3),(x1, x4)} for x1

Shifts.
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(a) Mean shift (b) Variance shift

FIGURE 8. OC ARL Curves of P = {(x1, x2)}, P = {(x1, x3)} and P = {(x1, x2)} for x1 Shifts.

The chart detection power for x1 shifts is not
only influenced by the proportion of pairs of x1, but
also by the number of pairs of x1 involved in P.
We demonstrate this point in Figure 7. We compare
the performance of P = {(x1, x2)},P = {(x1, x2),
(x1, x3)} and P = {(x1, x2), (x1, x3), (x1, x4)} sepa-
rately. The proportions of pairs of x1 in these three
charts are all 100%. However, we can see the chart
including the most pairs of x1, i.e., P = {(x1, x2),
(x1, x3), (x1, x4)} performs best, followed by P =
{(x1, x2), (x1, x3)}, with P = {(x1, x2)} the last
choice. As a result, we can conclude that, given the
same proportion, the higher the number of pairs of
the shifted dimension in P, the better the charting
performance.

Generally, for Ps including different pairs of x1,
the correlation of the included pair of x1 has little
influence on the detection power. We demonstrate
this point by comparing the following charts with a
unique pair of x1, i.e., P = {(x1, x2)}, P = {(x1, x3)}
and P = {(x1, x4)} separately, with their corre-
sponding correlation coefficients as 0.3, 0.09, and
0.0027. From Figure 8, we can see that they have
similar detection power and their curves are not dis-
tinguishable. Hence, we can conclude that, for Ps
including multiple pairs of x1, these pairs detect the
shift in x1 with equal efficiency. Say, for example,
for P = {(x1, x2), (x1, x3)}, these two pairs will con-
tribute equally to the OC signal for x1 shifts. This
brings a lot of convenience for us when selecting the
pairs.

For shifts in more than one dimension, the choice
of pairs is more complicated. We consider mean or
variance shifts in both x1 and x2 for P = {(x1, x2),
(x1, x3)}, P = {(x1, x2)} and P = {(x1, x3)}. From
Figure 9, we can see that generally P = {(x1, x2)}
performs best, with a minor advantage to P =
{(x1, x2), (x1, x3)}. This is because, though the lat-
ter has more pairs of x1, its proportion of pairs of
x2 is lower. The noise introduced by pair (x1, x3) is
bigger than the detection power contributed by it.
From this point, we can see that introducing more
pairs is not always better.

Now we consider the charting performance of dif-
ferent P for correlation shifts, and deliver our con-
clusions from the following simulation results. We
consider the correlation between x1 and x2 changing
from −0.9 to 0.9 while the other correlations remain
unchanged. As Figure 10 shows, we denote Ps that
do not have the pair (x1, x2) by black dot curves
with cross marks. Otherwise we denote Ps by six
different line styles and marks with respect to their
different proportions of the pair (x1, x2), i.e., 1/6,
1/5, 1/4, 1/3, 1/2, 1. We can see that, as long as
the pair (x1, x2) is included in P, the chart can de-
tect its change to some degree. Otherwise, the chart
almost has no detection power. This demonstrates
that it is only the pair (x1, x2) that contributes to
the OC signal. Furthermore, from Figure 10, we can
see that the higher the proportion, the better the
performance. This means that the detection power is
interfered with the other unrelated pairs in P. The

Journal of Quality Technology Vol. 48, No. 2, April 2016



ROBUST MULTIVARIATE CONTROL CHART BASED ON GOODNESS-OF-FIT TEST 155

(a) Mean shift
(b) Variance shift

FIGURE 9. OC ARL Curves of P={(x1, x2),(x1, x3)}, P={(x1, x2)}, and P={(x1, x3)} for Shifts in Both x1 and x2.

more unrelated pairs included, the more noise will be
added to the chart and consequently the detection
power will be worse.

From the discussion above, we can see that in-
cluding all the p(p−1)/2 pairs in P brings about the
most omnipotent detection performance. In this way,
the chart can detect any marginal mean or variance
shift, as well as any shift in the correlation struc-
ture, though for detecting a certain shift pattern, this
charting performance is not the best compared with
other pair selection mechanisms designed particu-
larly for this shift pattern. For example, the detection
power of P = {(x1, x2), (x1, x3), (x1, x4), (x2, x3),
(x2, x4), (x3, x4)} for x1 shifts only ranks in the mid-
dle of the total 63 charts, as Figure 11 shows. Here
we also summarize some guidelines on the optimal
pair selection targeting different shift patterns.

• For mean and variance shifts

— If no prior information is known, the bot-
tom line is to include all the p dimensions
in P, which corresponds to �p/2
 pairs. In
this way, the chart can detect any marginal
mean or variance shift. Furthermore, how
to pair these p dimensions has no influence
on the detection power, which brings con-
venience for practitioners.

— If shifts in a certain dimension are priori-
tized, including all pairs of this dimension
and pruning away all irrelevant pairs bring
about the best detection power.

— If shifts in more than one dimension are pri-
oritized, only including these dimensions in
P by combining them as pairs and trying
the best to prune away pairs of the other
irrelevant dimensions bring about the best
detection power.

FIGURE 10. OC ARL Curves of the 63 Possible P for

Correlation Shifts with the Proportion of Pairs (x1, x2) as

0, 1/6, 1/5, 1/4, 1/3, 1/2, 1.
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(a) Mean shift

(b) Variance shift

(c) Correlation shift

FIGURE 11. OC ARL Curves of P = {(x1, x2), (x1, x3),

(x2, x3), (x2, x4), (x3, x4)} for x1 Shifts.

• For correlation shifts

— If we want to detect any change in the
correlation structure, then involving all the
p(p− 1)/2 pairs is the most parsimonious.

— If some correlations are of more inter-
est than others based on some prior in-
formation, then only involving the pairs
representing these interesting correlations
and pruning away any other irrelevant pair
bring about the best charting performance.

6. A Real-Data Application

We use a real dataset from a semiconductor-
manufacturing process to illustrate the application of
DFMGoF. The dataset, which is publicly available in
the UC Irvine Machine Learning Repository (http://
archive.ics.uci.edu/ml/datasets/SECOM), contains
a total of 1567 samples from a semiconductor manu-
facturing process. Each sample is a vector of 591 di-
mensions, consisting of 591 continuous measurements
during the process in producing each batch. Among
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FIGURE 12. The Scatter Plots of Three Pairs of Variables. The red dots represent the IC samples and the blue cross

represents the OC samples.

them, 1463 samples are classified as conforming ones
(IC samples), while the remaining 104 samples are
classified as nonconforming ones (OC samples). The
goal of this section is to use this dataset to illustrate
the on-line process quality control using DFMGoF.

As a preprocessing step, we remove 117 variables
with constant values from the 591 variables in all
the 1567 samples. In addition, we impute the miss-
ing data by replacing the missing values with the
mean of the observed values from that variable be-
cause the fraction of missing values in the dataset
is trivial. Among the remaining 474 variables, we
find that 12 variables, namely {X3, X15, X38, X99,
X126,X146,X148,X264,X348,X350,X374,X383}, have
no significant difference in their mean values between
the IC and OC samples. As a result, for these 12 vari-
ables, any MSPC chart designed merely to monitor
the process mean vector might be ineffective. Sub-

sequently, we focus on these 12 variables to demon-
strate the advantage of DFMGoF. The variables are
denoted as {V1, . . . , V12} for notation simplicity. Fig-
ure 12 compares some pairwise scatter plots of these
12 variables of 100 IC samples with those of 60 OC
samples (these samples are randomly selected from
the dataset because plotting all the IC and OC sam-
ples makes the points unidentifiable). It clearly re-
veals that the mean values of the variables do not
differ much between IC and OC samples, but their
variance and correlation structure change to some de-
gree. Furthermore, the normal QQ plots (Figure 13)
show that these variables do not have marginal nor-
mal distributions, indicating distribution-free charts
might perform more robustly for this dataset.

To demonstrate the application of DFMGoF, we
monitor the observations sequentially: we randomly
draw m0 = 500 IC observations without replace-

FIGURE 13. The Normal Q-Q Plots for V3 and V4.
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TABLE 5. The ARLs of Different Charts for Monitoring the Semiconductor Production Process with p = 12,

m0 = 500, λ = 0.05, and τ = 60. Numbers in parentheses are SDRL values

DFMGoF RTC ChangePt SSEWMAC

IC 199 (181) 70.1 (11.5) 52.5 (55.5) 21.0 (4.54)
OC 38.5 (30.3) 83.6 (85.0) 92.3 (20.8) 40.0 (20.1)

ment as reference samples from the 1463 IC samples,
then we draw the subsequent observations sequen-
tially as on-line testing samples. We set ARL0 = 200,
λ = 0.05, and w = 58. We first evaluate the IC per-
formance of the chart by drawing the testing samples
independently from the remaining 963 IC samples.
In each replicate, the chart runs until an OC sig-
nal is generated and the corresponding run length
is recorded. The procedure is repeated 2000 times
and the estimated ARL0s of DFMGoF and the other
three charts are reported in Table 5. It shows that,
except DFMGoF, the other three charts have exces-
sive false alarms after short runs, indicating their un-
acceptable IC performance. This is because the non-
normality of the data makes the normal assumption
of SSEWMAC and ChangePt invalid, and the refer-
ence sample size m0 = 500 is insufficient for RTC
to get a proper control limit. In contrast, DFMGoF
demonstrates superior performance in this case.

Next we compare the OC performance of DFM-
GoF with the other charts. Similar to Section 4.2,
we adjust the control limits of the other charts to
make their ARL0s close to 200 through resampling
from the IC samples. We choose ξ = 60, meaning

that the first 60 on-line samples are drawn from the
remaining IC samples and the subsequent on-line
samples are drawn from the OC samples. The pro-
cedure is repeated 2000 times. Then the OC ARLs
are compared in Table 5, where DFMGoF has the
best performance among these four charts with OC
ARL= 38.5 and SDRL= 30.31. For illustration, Fig-
ure 14 shows one replicate of DFMGoF, where the
blue solid dot represents the monitoring statistic Zn

and the red circle represents the corresponding con-
trol limit Hn(α,Fm0+n) for every step. We can see
that DFMGoF has a quick response to the process
shift with a timely increase in Zn(w, λ) after the
ξth sample. Finally, Zn exceeds the control limit at
n = 67, signalling an OC alarm with run length 7.

7. Concluding Remarks

Though nonparametric MSPC has been exten-
sively studied in the literature, the challenges associ-
ated with designing distribution-free control schemes
for monitoring both the mean vector and the covari-
ance matrix simultaneously are yet to be well ad-
dressed. This paper presents a new MSPC method to
fill in this gap. Specifically, we propose a new chart

FIGURE 14. One replicate of DFMGoF for Monitoring the Semiconductor Production Process when Changes Occur at τ
= 60. The black dot represents the Zn calculated at each step and the red dot represents the control limit Hn(α,Fm0+1) at

each step.
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based on a multivariate GoF test to detect general
distributional changes. We also propose to use data-
dependent control limits to achieve the distribution-
free property regardless of the type or dimension
of the IC distribution. A computational algorithm
based on the permutation principle is proposed to
find the control limits on line along with the chart-
ing statistics. Numerical studies show that the pro-
posed chart has exactly the distribution-free prop-
erty and proves to be robust in detecting general pro-
cess changes. Its application in a real dataset is also
illustrated through a case study.

Along this research direction, there are also some
valuable extensions. First, when the dimension is
large, the current calculation procedure of the con-
trol limits requires a large amount of computation
time. It is of interest to design a more efficient
computation procedure taking advantage of modern
computing techniques, e.g., distributed computing or
importance sampling, to reduce the execution time
for on-line applications. Second, extensions of the
proposed chart to autocorrelated processes are also
worth studying. In these cases, the charting statistics
should also be able to detect changes in the process
autocorrelation structure. Furthermore, when calcu-
lating the control limits, the permutation procedure
should keep the autocorrelation structure as well.

Then more advanced algorithms, such as the block
bootstrap method, need to be considered.

Appendices

A.1. Computational Complexity of DFMGoF

Further computational issues deserve our consid-
eration for fast implementation of DMFGoF. Com-
puting the monitoring statistic Zn requires at most
O(qn) computation time (i.e., comparing (Xnj ,Xnk)
with (Xij ,Xik) for i = −m0 + 1, . . . , n− 1 for every
pair (j, k)). But it is computationally expensive to
compute the control limit Hn(α,Fm0+n) by permu-
tation, as Algorithm 1 shows below. Every permuta-
tion Sv

n = {Xv−m0+1 , . . . ,Xv0 ,Xv1 , . . . ,Xvn} needs
O(n) computation time. To calculate Zv

n from Sv
n, the

new probabilities {P̂ vn,r
0,jk (Xvi,jk),−m0 + 1 ≤ i ≤ n}

can be obtained directly from {P̂n,r
0,jk(Xi,jk),−m0 +

1 ≤ i ≤ n} (by the same permutation sequence).
However, {P̂ vn,r

jk (Xvi,jk),max{1, n−w+1} ≤ i ≤ n}
are different from {P̂n,r

jk (Xi,jk),max{1, n−w+ 1} ≤
i ≤ n}, because the former are based on the ranks
of Xvi(max{1, n − w + 1} ≤ i ≤ n) in Sv

n rather
than those in Sn. Therefore they have to be recal-
culated with additional O(qw2) computation time.
Zv

t for max {1, n− w + 1} ≤ t < n can be calcu-

ALGORITHM 1. Permutation Procedure to Find Control Limits

Define flag = 1
Draw a permutation Sv

n = {Xv−m0+1 , . . . ,Xv0 ,Xv1 , . . . ,Xvn}
Get {P̂ vn,r

0,jk (Xv−m0+1:vn,jk)} directly from {P̂n,r
0,jk(X−m0+1:n,jk)}

Compute {P̂ vn,r
jk (Xvi,jk),max{n− w + 1, 1} ≤ i ≤ n}

Calculate Zv
n

for t = n− 1 to max{n− w + 1, 1} do
Update {P̂ vt,r

0,jk(Xvi,jk)} from {P̂ vt+1,r
0,jk (Xvi,jk)} for max{t− w + 1, 1} ≤ i ≤ t

Update {P̂ vt,r
jk (Xvi,jk)} from {P̂ vt+1,r

jk (Xvi,jk)} for max{t− w + 1, 1} ≤ i ≤ t

Calculate Zv
t

if Zv
t > Ht(α,Fm0+t) then
Discard current permutation, set flag = 0

end if
end for
Calculate Zv

n

if flag = 1 then
return current permutation Zv

n

end if
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lated for every time point t in a recursive manner
and only O(qw) computation time is needed in each
update. Then the total computational complexity is
O(qbw2 + qn), linear in n, b, and p. Such computa-
tional complexity is implementable with the powerful
computing resources nowadays. With the help of par-
allel computing, the computation time would be re-
duced further and therefore it is easy to apply DFM-
GoF for high-dimensional process monitoring.

A.2. The Multivariate t and Gamma
Distributions

The multivariate t distribution used in this pa-
per is based on the proposal by Johnson and
Kotz (1972). It is defined as follows. Let X fol-
low the p-dimensional multivariate normal distribu-
tion Np(0,Σ) with mean vector 0 and covariance
matrix Σ. Let Z follow an independent chi-square
distribution with ζ degrees of freedom. Then T =
μ +X/

√
Z/ζ follows a p-dimensional t distribution

with ζ degrees of freedom with noncentrality param-
eter μ. In addition, we have

E(T) = μ, Var(T) =
ζ

ζ − 2
Σ.

For a more detailed discussion on the multivariate t
distribution, please refer to Anderson (1984).

The multivariate gamma distribution considered
here is first proposed by Krishnamoorthy and
Parthasarathy (1951). It could be generated as fol-
lows. Let X be a matrix of dimension ζ × p. Each
row of X follows a p-dimensional multivariate nor-
mal distribution Np(0,Σ) independently. Then

G ≡ 1
2
diag(XTX) + μ

is defined to follow the p-dimensional gamma distri-
bution with ζ degrees of freedom, i.e., Gamp,ζ , with
noncentrality parameter μ. In addition, denoting
G = (G1, . . . , Gp), then Gi =

∑ζ
j=1 X

2
ji/2 + μi(1 ≤

i ≤ p) follows a gamma distribution with scale pa-
rameter θi = σii and shape parameter β = ζ/2.
Therefore, the density of the marginal distribution
can be expressed as

f(Gi = x) =
(x− μi)ζ/2−1 exp

[
−x−μi

σii

]
(σii)ζ/2Γ(ζ/2)

, x ≥ μi.

(A.1)
Its expectation and variance follow the properties of
a gamma distribution as E(Gi) = ζσii/2 + μi and
var(Gi) = ζσ2

ii/2. In addition, we can find the co-

variance between Gi and Gj by definition as

Cov(Gi, Gk)

= Cov

⎛⎝ ζ∑
j=1

X2
ji/2 + μi,

ζ∑
j=1

X2
jk/2 + μk

⎞⎠
=

ζ

4
Cov(X2

ji,X
2
ik) =

ζ

2
σ2

ik.

Thus, the correlation between any two dimensions
of Gamp,ζ is nonnegative. Furthermore, we could see
that the mean vector of Gamp,ζ depends on both
the noncentrality parameter μ and the variance of
the underlying multivariate normal distribution, i.e.,
diag(Σ). Therefore, the change in the variance of
Gamp,ζ will lead to the change in its mean vector.
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