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Online monitoring of big data streams: A rank-based sampling algorithm
by data augmentation

Xiaochen Xiana, Chen Zhangb, Scott Bonka, and Kaibo Liua

aDepartment of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI; bDepartment of Industrial
Engineering, Tsinghua University, Beijing, China

ABSTRACT
In many applications of modern quality control, process monitoring involves a large number
of process variables and quality characteristics. Practitioners are desired to attain complete
information about the process in order to assure quick detection of shifts that may possibly
occur at any variable. However, full information is not always available during online moni-
toring of big data streams due to limitations of monitoring resources in practice. In this
paper, a rank-based monitoring and sampling algorithm based on data augmentation is
proposed to quickly detect the mean shifts in a process when only a limited portion of
observations are available online. Specifically, at each observation time, the proposed
method will automatically augment information for unobservable variables based on the
online observations, and then intelligently allocate the monitoring resources to the most
suspicious data streams. Comparing to the existing literature, this method is able to accur-
ately infer the status of all variables in a process based on a small number of observable
variables and effectively construct a global monitoring statistic with the proposed aug-
mented vector, which leads to a quick detection of the out-of-control status even if limited
shifted variables are observed in real time. Simulation studies as well as a real case study on
real-time solar flare detection are conducted to demonstrate the efficacy and applicability of
the proposed method.

KEYWORDS
cumulative sum (CUSUM);
data augmentation; partial
observations; rank-based
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process control (SPC)

1. Introduction

Statistical Process Control (SPC) has been developed
for process monitoring to ensure stable and satisfac-
tory performance in various systems, especially those
involving multiple variables. The main objective is to
detect any assignable causes as soon as they occur
while maintaining a certain global false alarm rate. In
the literature, SPC techniques have been widely
applied in industrial, clinical, and biological environ-
ments (Wang and Jiang 2009; Zou et al. 2015; Zou
and Qiu 2009).

As sensor technology advances, big data streams
have become commonly available in many modern
data-rich applications. Here, big data streams refer to
multiple series of real-time, continuous and sequen-
tially ordered observations. While receiving increasing
attention (Wang and Mei 2015; Zou et al. 2015),
effective online monitoring of big data streams for
quick change detection is still a challenging task. The
challenges are rooted in that the abnormal events are

naturally complicated and unknown in advance, and
the high volume and high dimensionality of big data
streams place an essential demand on online data
communication, storage space, memory, computa-
tional power and processing time. As a result, we
often have to make a decision based on partial obser-
vations during online monitoring (Gama and Gaber
2007; Limongelli 2003; Tan et al. 2012). However, the
existing SPC literature heavily relies on the assump-
tion that the observations of all variables are fully
accessible in real time.

Generally speaking, the inaccessibility to full obser-
vations during online monitoring is commonly seen in
the following three scenarios (Liu, Mei, and Shi 2015;
Xian, Wang, and Liu 2018): (1) due to the limitation of
the number of sensors, measurements of only a subset
of the interested variables can be obtained at each data
acquisition time; (2) due to the limitation of the battery
life of sensors, only a subset of sensors can be turned
on to collect data in real time; and (3) due to the limi-
tation of communication bandwidth, only a subset of
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measurements can be transmitted back to the data cen-
ter for real-time processing.

As a specific example, environmental monitoring
usually involves collecting measurements from mul-
tiple sensors at various locations to avoid hazardous
events such as earthquakes, wildfires, tornadoes, and
landslides. To quickly detect such calamities and
reduce environmental and economic losses, practi-
tioners are desired to access the full observations of
each location at each data acquisition time. However,
due to the limited lifetime of the sensor batteries and
the high cost of battery replacement, in practice only
a subset of the sensors are set to the “ON” mode for
surveillance (Sasidhar, Sreeresmi, and Rekha 2014;
Xian, Wang, and Liu 2018). In this case, although a
large number of sensors are deployed, only partial
observations can be actually accessed by practitioners
in real time. In many other applications, the number
of sensors and data communication bandwidth may
also impede the acquisition or access of full observa-
tions in real time. For example, when applied in
search and rescue, a swarm of unmanned aerial
vehicles (UAVs) can only observe a small portion of
the interested zones at a time given that the number
of UAVs is limited in practice (Waharte and Trigoni
2010). In another example, when monitoring the
occurrence of solar flares, only partial image informa-
tion captured by the satellite can be transmitted back
to earth for real-time analysis because of the commu-
nication bandwidth constraint, though the full image
information can be recorded and available for analysis
offline (Liu, Mei, and Shi 2015).

In all of the above examples, only a portion of the
data streams are observable at a time due to resource
constraints, while assignable causes may possibly hap-
pen at any variable from the whole data streams.
Below we summarize our interested detection problem
mathematically. Suppose we are monitoring p inde-
pendently and identically distributed (i.i.d.) variables
in the set P ¼ 1, 2, � � � , pf g, and the measurements
of each variable, denoted as Xj tð Þ (j ¼ 1, :::, p), form a
data stream over the observation time t ¼ 1, 2, � � � :
The i.i.d. assumption of the data streams, as pointed
out by Wang and Mei (2013), is often satisfied when
XjðtÞ’s are selected to be the residuals of some spatial-
temporal models. Thus, this assumption has been
commonly used in the setting of high-dimensional
monitoring literature (Wang and Mei 2015; Zou et al.
2015). X tð Þ ¼ X1 tð Þ, X2 tð Þ, :::,Xp tð Þ� �0

denotes the
measurement values of the p variables at time t: Due
to resource constraints, only q q<pð Þ out of the p var-
iables are “observable” at each time t, where q is

limited by the availability of monitoring resources in
practice and therefore predetermined by the applica-
tion context. The set of observable variables at time t
is denoted as O tð Þ, and the observed data is denoted
as XO tð Þ: When the process is in control (IC), X tð Þ is
assumed to be i.i.d. across different time points, and
each data stream has a general cumulative probability
function (CDF) F xð Þ and a probability density func-
tion (PDF) f xð Þ: The distribution functions F xð Þ and
f xð Þ can be acquired empirically based on the histor-
ical IC data in Phase I analysis and this paper focuses
on Phase II monitoring. Without loss of generality,
X tð Þ is assumed to have an IC mean l ¼ 0 ¼
0, 0, � � � , 0ð Þ0, and each variable has an IC standard
deviation of 1. This standardization can be done by
pre-centering and scaling the raw data. The process
becomes out of control (OC) if at least one of the var-
iables has a mean shift at an unknown change point
s, such that the mean vector of X tð Þ changes from
l ¼ 0 to l0 6¼ 0: To highlight the main idea of the
proposed method, we focus on detecting upward
mean shifts hereafter. Here it is noteworthy that the
change point s, the post-change mean l0 and the
number of affected variables are unknown. Based on
the formulation, the key question is how to intelli-
gently and sequentially decide the most informative
variables to observe at each time subject to given
resource constraints, in order to quickly detect the
process mean shift while maintaining a pre-specified
IC average run length (ARL) requirement.

In monitoring big data streams with partial obser-
vations, the status of the system depends on both the
observed and unobserved variables. Thus, in theory,
the detection capability for a process shift can be sig-
nificantly improved if the status of the unobserved
variables is appropriately inferred based on the meas-
urements of observable variables. Specifically, in this
paper, we propose to leverage data augmentation to
analytically augment the statistics of the unobserved
variables, which facilitates the monitoring and sam-
pling of all variables involved in the process. Data
augmentation refers to a type of methods via adding
information or latent variables to the original
“unobservable” or “missing” data, such that the prob-
lem becomes tractable (Van Dyk and Meng 2001).
While this idea is conceptually sound, how to effect-
ively augment unobservable variables in the context of
big data streams during online monitoring is a very
challenging problem and has not been explored in the
past. First, it is not intuitive to find out the relation-
ship between the observable and unobservable varia-
bles, such that the augmentation methods can be
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effectively integrated with the monitoring and sampling
scheme to enhance the performance of SPC. Second,
since we only have limited resources whereas the
change point as well as the number of shifted variables
are unknown, it is possible that only few OC variables
are observed simultaneously after the shift occurs in
the system. Thus, the augmented values should facili-
tate the detection of the process shift even when a very
small number of OC variables are observed. Third, big
data streams may not follow some well-known distribu-
tions. As a result, the augmentation method is desired
to be not restricted to a certain distribution.

To address the aforementioned challenges, we pro-
pose a rank-based CUSUM monitoring and sampling
method, called Rank-based Sampling Algorithm by
Data Augmentation (R-SADA), to accelerate the detec-
tion of process shifts in the context of partial observa-
tions by augmenting the unobservable data with the
measurements of the observed ones. Comparing to
other rank-based methods (Qiu and Hawkins 2001;
Xian, Wang, and Liu 2018), the proposed monitoring
and sampling method is parametric since it incorpo-
rates the PDF and CDF of the process distribution into
the dynamic data augmentation step. Such dynamic
augmentation using specific domain knowledge makes
new methodological contribution and opens new
research directions in SPC. In particular, our method
still inherits the merits of rank-based methods, i.e., hav-
ing a robust detection power for general distributions.
The main reason we use rank-based statistic is that the
rank information of the data streams is naturally
dependent, which allows us to dynamically augment
useful statistics concerning about the system status
based on observed values. Besides, since the rank infor-
mation of one variable is directly associated with all
other variables, the proposed method is sensitive to
quickly trigger an alarm even if only a small number of
OC variables are observed. Moreover, it will be proved
that the proposed method can be effectively integrated
with the monitoring and sampling scheme while ensur-
ing two nice properties: (1) the IC property: no varia-
bles will be left unobserved for a long time when the
process is IC; (2) the OC property: when the process
becomes OC, the method tends to keep observing the
suspected OC variable, which leads to quick detection
of assignable causes.

The remainder of the paper is organized as follows.
In Section 2, the literature about data augmentation
and related SPC approaches are reviewed, which lay
the groundwork for our proposed method. We then
introduce the proposed R-SADA method in detail fol-
lowed by the theoretical investigation of its properties

in Section 3. An illustrative example is also provided
to demonstrate the proposed method in this section.
Numerical simulations and performance comparisons
are presented in Section 4. Section 5 contains a real
solar flare detection example to illustrate the applica-
tion of the proposed method. Finally, Section 6 con-
cludes the paper.

2. Data augmentation and related
SPC approaches

In this section, we review the literature concerning
rank-based and multivariate SPC approaches, and SPC
with partial observations, which are closely related to
our proposed method.

2.1. Rank-based SPC procedures and multivariate
control charts

In this subsection, we focus on the rank-based meth-
ods, which are almost exclusively used in nonparamet-
ric SPC. The main idea of the rank-based methods is
to utilize the rank among the observations instead of
the observations themselves, and thus no parametric
model is needed. An overview of this topic can be
found in Qiu (2013). The literature of rank-based SPC
can be classified into two categories according to
the number of variables involved. For the univariate
cases, see Bakir (2004), Chakraborti, Laan, and Wiel
(2004), Chakraborti and Eryilmaz (2007), Chakraborti,
Eryilmaz, and Human (2009), Li, Tang, and Ng
(2010), and Liu, Tsung, and Zhang (2014) for details.

There are also a few extensions of the rank-based
control charts to the multivariate cases. For example,
Zou, Wang, and Tsung (2012) employed the multivari-
ate spatial ranks to multivariate exponentially weighted
moving average (EWMA) charts. Zi, Zou, and Tsung
(2012) proposed a multivariate sign EWMA control
scheme using a rank-based regression approach. Qiu
and Hawkins (2001, 2003) proposed a multivariate
nonparametric CUSUM control chart based on moni-
toring the anti-rank of variables. In particular, the anti-
rank vector of X tð Þ ¼ X1 tð Þ, X2 tð Þ, :::,Xp tð Þ� �

,
denoted as B tð Þ ¼ B1 tð Þ, B2 tð Þ, :::,Bp tð Þ� �

, is a permu-
tation of 1, 2, � � � , pð Þ0, such that XB1 tð Þ tð Þ �
XB2 tð Þ tð Þ � � � � � XBp tð Þ tð Þ: Then a statistic nðtÞ ¼
n1 tð Þ, n2 tð Þ, :::, np tð Þ� �

can be constructed based on the
last anti-rank Bp tð Þ, where

nj tð Þ ¼ I Bp tð Þ ¼ j
� �

: (1)

The authors proved that detecting the changes
in the distributions of X tð Þ (with null hypothesis
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H0 : l1 ¼ � � � ¼ lp) is equivalent to detecting the
changes in the IC expectation of n tð Þ, i.e., E n tð Þð Þ ¼
g1, g2, :::, gpð Þ ¼ g , where gi is the probability that the
i th variable takes the largest value among all the
measurements under H0: Then, Qiu and Hawkins
(2001, 2003) suggested a monitoring statistic that
depicts the state of the process based on the difference
between the observed anti-rank n tð Þ and its IC
expectation.

To monitor multiple variables simultaneously and
exploit global information, many studies have been
developed to construct monitoring statistics from
individual local statistics. One most straightforward
and popular way is to first calculate a local statistic
for each variable by some effective univariate control
charts (e.g., CUSUM) and then combine the statistics
together for global monitoring. For example, Woodall
and Ncube (1985) and Tartakovsky et al. (2006) sug-
gested using the largest local CUSUM statistics as a
global monitoring statistic, whereas Mei (2010) pro-
posed to use the summation of all the local statistics.
These two schemes, denoted by the Tmax and Tsum,
show advantages in different OC scenarios. Note that
the number of variables affected by assignable causes
is generally unknown in practice. Thus, the Tmax

scheme is more sensitive to sparse shifts as its under-
lying assumption is that only one variable is affected.
Nevertheless, the Tsum scheme can trigger an alarm
much faster when shifts occur at a large number of
variables. Furthermore, Mei (2011) proposed to sum
the r largest local statistics (named as Top-r) as a
tradeoff between Tmax and Tsum: However, the per-
formance of these monitoring statistics highly depends
on the number of OC variables. In other words, these
methods may lead to detection delay in our problem
of interest, because it is not guaranteed that all OC
variables can be observed when monitoring big data
streams with partial observations. As a result, a better
monitoring scheme is needed to quickly trigger an
alarm, which is insensitive to the number of OC vari-
ables observed at a time.

2.2. SPC with partial observations

In the literature, there are a few works concerning
SPC with partial observations available. These studies
can be categorized into two types. The first category
focuses on sampling partial observations over the tem-
poral domain, i.e., adaptively adjusting the sampling
intervals based on the observed values. This line of
research is known as the variable sampling interval
(VSI) control chart (Arnold and Reynolds, 2001; Li

and Qiu, 2014; Reynolds, Amin, and Arnold 1990).
Unfortunately, this strategy falls short in our inter-
ested problem here as it still requires full observations
of all data streams at each sampling time. To address
this issue, the second type of study considers SPC
with spatial sampling strategies, i.e., observing only a
portion of variables and adaptively determining which
variables to observe at each time. In this category,
there are two different approaches to deal with unob-
servable data streams. The first approach is to utilize
only the observable variables to construct monitoring
statistics. For example, Liu, Tsung, and Zhang (2014)
applied this idea to develop an adaptive monitoring
strategy in a Bayesian network. However, the pro-
posed method is not scalable to big data streams due
to its high computational burden and the prerequisite
of the Bayesian network structure. The second
approach dealing with unobservable data streams is by
data augmentation. Data augmentation, as its name
suggested, generally involves “adding more data” espe-
cially when there are unobservable values making a
problem hard to solve. It has been applied widely in
statistical analysis and machine learning applications
such as parameter estimation (Dempster, Laird, and
Rubin 1977), design of experiments (Little and Rubin
2014), regression (Allen 1974), Monte Carlo simula-
tions (Wei and Tanner 1990) and training data con-
structions (Lemley, Bazrafkan, and Corcoran 2017).

Concerning data augmentation in the SPC litera-
ture, Liu, Mei, and Shi (2015) and Xian, Wang, and
Liu (2018) proposed the Top-r Adaptive Sampling
(TRAS) and Nonparametric Anti-rank based Sampling
(NAS) strategies, respectively. The TRAS algorithm
focuses on monitoring big data streams that follow
normal distributions. Based on a Top-r CUSUM
approach, the TRAS algorithm introduced a constant
imputation parameter to the local statistics of the
unobservable variables that compensates for the
untaken observations. The NAS algorithm then gener-
alized this idea to monitor arbitrarily distributed data
streams by incorporating the imputation parameter
with a rank-based method. Recently, Wang et al.
(2018) proposed a dynamic spatial sampling method
that incorporates the spatial information of the shifts
when only partial observations are available. This
method can also be regarded as an augmentation
method as it heuristically augments the likelihood of a
variable being OC according to its adjacent variables.
From the perspective of data augmentation, all the
aforementioned algorithms are equivalent to using an
imputation method, in which a heuristic substitution
is employed for the missing data (Little and Rubin
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2014). More specifically, all the methods considered
the imputation parameter to be pre-specified and a
constant number. As a result, the estimation of unob-
served data is non-informative and non-adaptive to
the online measurements, which may introduce biases
or uncertainties into the monitoring scheme and even-
tually degrade the detection performance.

3. Methodology development

In this section, we describe the details of the proposed
method. The challenging question is how to utilize the
observed information to effectively augment the statis-
tics of the unobservable data and facilitate the detec-
tion of OC variables. Our innovative idea is to
augment the rank information for the full data
streams. The proposed method is inspired by the non-
parametric anti-rank procedure in Qiu and Hawkins
(2001) and Xian, Wang, and Liu (2018); however, our
method is also fundamentally different from the exist-
ing ones as we dynamically and analytically augment
the information for unobservable variables based on
the online observations. While the proposed method
can be adjusted to accommodate different distribu-
tions, it is a parametric method that requires knowing
the underlying IC distribution, as the proposed data
augmentation algorithm explicitly uses this underlying
distributional information. However, it should be
noted that the proposed method does not require the
data streams to follow well-known distributions. In
practice, practitioners can utilize recorded historical
IC data and offline learn the empirical distributions.
Since the rank information among the variables is
dependent for all data streams, the proposed method
can exploit the relationship among the observable and
unobservable variables based on the real-time observa-
tions. Besides, given that the rank information may
change dramatically for all variables even if only one
variable has a shift, the proposed method is sensitive
to a wide range of process changes, especially when
only a small number of shifted variables are observed.
Section 3.1 will discuss the details of constructing the
augmented vector. Section 3.2 will propose the R-
SADA method, and its properties will be investigated
in Section 3.3. Then Section 3.4 provides an illustra-
tive example of this proposed method.

3.1. Constructing a dynamic augmented vector
based on anti-rank

Recall that X tð Þ is the vector of the measurement values
of p variables at time t, and XO tð Þ is the observable

subset of X tð Þ: To facilitate monitoring big data streams
in the scenario of partial observations, we are interested
in constructing a dynamic augmented vector based on
the observable data XO tð Þ: Specifically, our approach is
inspired by the anti-rank procedure in Qiu and
Hawkins (2001), but we generalize the last anti-rank
indicator nðtÞ (see Equation (1)) to the scenario of par-
tial observations. While the generalized anti-rank
approach has also been considered in Xian, Wang, and
Liu (2018), the difference in our proposed method is
that we aim to dynamically and analytically construct
the augmented vector rather than heuristically using a
constant value for augmentation as in Xian, Wang, and
Liu (2018). To begin with, we define the augmented
vector as:

g tð Þ ¼ E n tð ÞjXO tð Þ
� �

: (2)

This generalization is crucial when there are unob-
servable variables. In addition, this formulation will
allow us to incorporate distributional information of
X tð Þ, which will be explained later. Then for each
variable j 2 P,
gj tð Þ ¼ E nj tð ÞjXO tð Þ

� �
¼ P nj tð Þ ¼ 1jXO tð Þ

� �
: (3)

Intuitively, the augmented vector g tð Þ represents
the probability that a variable is the largest among all
p variables. Then testing the consistency of g tð Þ and
its IC mean

E g tð Þð Þ ¼ E E n tð ÞjXO tð Þ
� �� �

¼ E n tð Þð Þ ¼ g (4)

is equivalent to testing the null hypothesis

H0 : l1 ¼ l2 ¼ � � � ¼ lp ¼ 0: (5)

The calculation and augmentation of nj tð Þ based on
Equation (3) highly rely on the true mean vector of
X tð Þ, i.e., l tð Þ: Without loss of generality, to develop
our method, we suppose that one variable has a mean
shift in the OC scenario. However, our method is not
limited to this assumption as we will show later in the
simulation and case studies. Equivalently, the alterna-
tive hypothesis can be mathematically written as

H1 : ljOC ¼ lOC > l1 ¼ � � � ¼ ljOC�1

¼ ljOCþ1 ¼ � � � ¼ lp ¼ 0,
(6)

where jOC 2 P is the only OC variable. In practice, the
probability that a large number of variables simultan-
eously go OC is quite low. Therefore, this assumption
is reasonable as the shifted variables are usually sparse
in big data streams. Similar considerations have also
been applied in the SPC literature, such as monitoring
high-dimensional process (Wang and Jiang 2009; Zou,
Jiang, and Tsung 2011) and sensor allocation (Liu,
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Zhang, and Shi 2014; Liu and Shi 2013). In practice,
the OC shift magnitude lOC is unknown beforehand.
We use a parameter lmin > 0 to represent the inter-
ested-smallest magnitude of mean shifts to be detected
(Liu, Mei, and Shi 2015). The effect of this parameter
will be further discussed in Section 4.

Suppose i tð Þ ¼ argmaxj2O tð Þ Xj tð Þ is the index of the
largest observable variable at time t: To construct a
dynamic augmented vector that timely reacts to suspi-
cious shifts, the probability gjðtÞ is updated depending
on three different scenarios: (1) j ¼ i tð Þ, (2) j 2 O tð Þ
and j 6¼ i tð Þ, and (3) j 62 O tð Þ: When an observed
variable j is not among the largest in O tð Þ (scenario
(2)), gjðtÞ will be set to zero since it cannot be the
largest among all p variables. For i tð Þ and the unob-
served variables, their augmented values are collect-
ively calculated according to the observed values to
recognize the system status. Based on the Bayes rule
and the sparse shift assumption, the augmented vector
g tð Þ in Equation (3) can be calculated as follows:

1. If j ¼ i tð Þ,

gj tð Þ ¼
F Xi tð Þ tð Þ
� �p�qP

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð ÞP

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ þ p�qð Þ

þ F Xi tð Þ tð Þ
� �p�q�1F Xi tð Þ tð Þ�lmin

� �
p�qð ÞP

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ þ p�qð Þ

:

(7)

2. If j 2 O tð Þ and j 6¼ i tð Þ,
gj tð Þ ¼ 0: (8)

3. If j 62 O tð Þ,

gj tð Þ ¼
1�F Xi tð Þ tð Þ

� �p�q
� �P

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ

p�qð Þ Pl2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ þ p�qð Þ

� �

þ 1�F Xi tð Þ tð Þ
� �p�q�1F Xi tð Þ tð Þ�lmin

� �
P

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ þ p�qð Þ

:

(9)

The derivation is shown in Appendix A. Please
note that

Pp
j¼1 gj tð Þ ¼ 1: Clearly, unlike all the exist-

ing literature, the augmented value gj tð Þ dynamically
changes as a function of the observed values XO tð Þ
instead of being a constant; thus, this dynamic aug-
mented vector is expected to better recognize the
real-time status of the system and timely reacts to sus-
picious shifts. For example, from Equation (9) we can
see that when Xi tð Þ tð Þ is large, the value of gj tð Þ
(j 62 O tð Þ) gets smaller. This means that the probabil-
ity of an unobserved variable being the largest gets

smaller, which agrees with our expectation. Besides,
the augmented value gj tð Þ relies on all observations
XO tð Þ to exploit the available information to the max-
imum extent possible. This procedure is thus funda-
mentally different from the conventional monitoring
schemes like Tmax and Tsum, in which the individual
statistics are “local” statistics in the sense that each of
them relies solely on the corresponding data stream.

Thus, the advantage of our proposed scheme is
twofold: (1) it allows to incorporate parametric mod-
els into a rank-based framework, and inherits its flexi-
bility to deal with various types of distributions; and
(2) given that the dynamic augmented vector depends
on all observable data streams, the shift occurs at any
observable variables will have an influence on the dis-
tribution of the entire augmented vector, which will
be very beneficial for quick change detection.
Specifically, when an OC variable is observed, gi tð Þ tð Þ
tends to increase and gj tð Þ (j 62 O tð Þ) decreases simul-
taneously. Since all the elements in g tð Þ will be
changed when the process is OC, it avoids the chal-
lenge of choosing an effective combination of local
statistics for global monitoring and balancing between
Tmax and Tsum, which is another main advantage over
the existing literature. Inspired by this finding, we will
further propose the monitoring procedures of the R-
SADA control chart and investigate the associated
properties in Sections 3.2 and 3.3, respectively. The
superiority of the augmented vector g tð Þ will be fur-
ther demonstrated in Section 3.4, Sections 4 and 5.

It should be noted that we used the last anti-rank
indicator njðtÞ ¼ I Bp tð Þ ¼ j

� �
as an example in deriving

g tð Þ in this subsection, which naturally leads to a one-
sided control chart that is sensitive to the upward mean
shift. According to Qiu and Hawkins (2001), the rank-
based monitoring procedure is most effective when using
the first and last anti-ranks (for detecting downward and
upward shifts, respectively). Therefore, in this manu-
script, we adopted this conclusion and used the last anti-
rank to construct the statistics as a demonstration.
However, other types of ranks can be easily constructed
in our framework as well with slight modifications. For
example, if downward shifts are of interest, we can use
njðtÞ ¼ I B1 tð Þ ¼ j

� �
instead. Since the main idea is simi-

lar, for simplicity, we choose to only study the last anti-
rank indicator njðtÞ ¼ I Bp tð Þ ¼ j

� �
hereafter.

3.2. Rank-based sampling algorithm by data
augmentation (R-SADA) control chart

Based on the discussion in Section 3.1, we will detail
the monitoring and sampling strategy in this subsection.
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At each acquisition time, the dynamic augmented vector
g tð Þ is constructed based on the partial observations
available, which then contributes to a global monitoring
statistic. If the monitoring statistic exceeds a control
limit subject to a pre-specified IC ARL, the R-SADA
control chart triggers an alarm and stops the process.
Otherwise, the sampling layout is updated in the next
acquisition time. In the followings, we will discuss two
major components of the R-SADA method: the moni-
toring statistic and stopping time, and the sam-
pling strategy.

3.2.1. Monitoring statistic and stopping time
As mentioned in Section 3.1, we need to test the
expectation of the augmented vector Eg ¼ g regarding
the null hypothesis in Equation (5). To that end, we
adopt the monitoring statistics of the CUSUM
approach in Qiu and Hawkins (2001). First, S 1ð Þ

t and
S 2ð Þ
t are the CUSUM statistics for g tð Þ and g , respect-
ively, which are defined as follows:

S 1ð Þ
t ¼ g, S 2ð Þ

t ¼ g if Ct � k,

S 1ð Þ
t ¼ S 1ð Þ

t�1 þ g tð Þ
� �

Ct�kð Þ=Ct

S 2ð Þ
t ¼ S 2ð Þ

t�1 þ g
� �

Ct�kð Þ=Ct if Ct>k:

8>>><
>>>:

(10)

Ct ¼ S 1ð Þ
t�1�S 2ð Þ

t�1 þ g tð Þ�g
� �0

� diag

S 2ð Þ
1, t�1 þ g1

� ��1
, :::, S 2ð Þ

p, t�1 þ gp
� ��1

� 	
�

S 1ð Þ
t�1�S 2ð Þ

t�1 þ g tð Þ�g
� �

,

(11)

where S 1ð Þ
0 ¼ S 2ð Þ

0 ¼ 0, and k is a constant. As a spe-
cial case, when k ¼ 0, S 1ð Þ

t ¼Pt
i¼1 g ið Þ is the sum of

the augmented vectors, whereas S 2ð Þ
t ¼ tg is the

expected value of S 1ð Þ
t under H0: Ct is a scalar repre-

senting the “distance” between S 1ð Þ
t and S 2ð Þ

t : The
quantity k is the allowance of the CUSUM such that
S 1ð Þ
t and S 2ð Þ

t are both reset to the IC expectation g if
their distance is less than k: Since all the components
of g tð Þ are changed when the system is OC, the moni-
toring statistic is supposed to consider all of its ele-
ments to maximize the detection capability. The
monitoring statistic yt is then defined as

yt ¼ S 1ð Þ
t �S 2ð Þ

t

� �0
diag

1

S 2ð Þ
1, t

, :::
1

S 2ð Þ
p, t

 !
S 1ð Þ
t �S 2ð Þ

t

� �
,

(12)

which is a classic Pearson’s v2 statistic that measures
the statistical difference between S 1ð Þ

t and S 2ð Þ
t when

k ¼ 0: Therefore, yt > h indicates a large difference
between S 1ð Þ

t and S 2ð Þ
t and that the system is OC,

where h is a constant threshold of this control chart.

The choice of h depends on the pre-scribed IC ARL
of the control chart, which can be obtained based on
a large quantity of IC data, or using simulation and
bootstrap techniques that sample from historical IC
data (for details, please refer to Appendix B).

3.2.2. Sampling strategy
Another important factor to ensure the efficiency of
the R-SADA method is that the sampling strategy
should be able to effectively locate the most suspected
variables. On one hand, if an OC variable with an
upward shift is observed, it has a larger probability to
be the maximum among all variables and thus its aug-
mented value will be larger. On the other hand, if no
OC variables are observable, i.e., Xi tð Þ tð Þ in Equation
(20) should not be significantly large, the augmented
values gj tð Þ of the unobservable variables will increase
as well. In other words, the augmented values for OC
variables are expected to increase no matter if they
are observed or not. Therefore, given that S 1ð Þ

t is the
CUSUM statistics for the augmented vector g tð Þ, the
variables associated with the large elements of S 1ð Þ

t

should be paid more attention to. Thus, we update
the sampling layout and observe the variables associ-
ated with the largest elements of S 1ð Þ

t at the next data

acquisition time. Recall that the elements of S 1ð Þ
t are

denoted as S 1ð Þ
1, t , � � � , S 1ð Þ

p, t

� �0
: Let j lð Þ, t be the variable

index of the decreasing order statistic of

S 1ð Þ
1, t , � � � , S 1ð Þ

p, t

� �
, i.e., S 1ð Þ

j 1ð Þ, t , t
� S 1ð Þ

j 2ð Þ, t , t
� � � � � S 1ð Þ

j pð Þ, t , t:

Therefore, at time t þ 1, we observe the variables
whose indices are in

O t þ 1ð Þ ¼ j 1ð Þ, t , :::, j qð Þ, t

 �

: (13)

3.3. Properties of the R-SADA control chart

In this section, we will investigate two important
properties of the R-SADA control chart under the
conditions of the system being IC and OC, respect-
ively. These two properties, namely the IC and OC
properties, reveal the sampling and detection capabil-
ities of the R-SADA control chart. Specifically, the
first property below studies the sampling layout of the
R-SADA control chart when the process is IC.

The IC property: Let U denote the set of variables
i 2 P that can never be observed after some finite
time t0, i.e., there exists a time t0 such that U ¼
\þ1
t¼t0PnO tð Þ, where PnO tð Þ represents the comple-

ment of set O tð Þ with respect to P: As h ! 1,
P U ¼ ;ð Þ ! 1, where ; represents the empty set.
(Proof can be found in Appendix C).

JOURNAL OF QUALITY TECHNOLOGY 7



The IC property indicates that the R-SADA control
chart keeps all variables in surveillance when the pro-
cess is IC. In other words, no matter which variable
becomes OC, it will not be neglected by the proposed
scheme although only a limited number of variables
can be observed at each time. Specifically, the R-SADA
method suspects the unobservable variables when there
is no strong evidence that the observed ones are OC.
In other words, it tends to sample the variables that
have not been monitored for a while. Next, the OC
property below further studies the sampling layout of
the R-SADA method when the process is OC.

The OC property: Suppose that k ¼ 0 and after
time t0, there is a shift such that E g tð Þð Þ 6¼ g: Let j�

be the OC variable with the largest mean shift such

that E F Xj� tð Þ� �p�q�1F Xj� tð Þ�lmin

� �� �
> q

p : Then

once the variable j� is observed at time t, there is a
nonzero probability that this variable j� will be kept
observed forever, i.e., j� 2 O sð Þ for any s � t: (Proof
can be found in Appendix D).

From the OC property, we proved that at least one
of the OC variables with a large shift will always be
observed with a nonzero probability once it is
observed. The combination of the two properties indi-
cates that when the process is OC, the sampling strat-
egy of the R-SADA control chart will first search for
suspicious variables among all variables, and then
automatically stick to monitoring the suspicious OC
variable once it is found to be highly likely OC. We
should mention that from the technical point of view,
Liu, Mei, and Shi (2015) and Xian, Wang, and Liu
(2018) have also investigated the sampling layout
when the process is IC and OC. However, the proof
of the two properties in this study is different and
much more challenging, as the augment values are
dynamically changing with the observations.

3.4. An illustrative example of the R-SADA method

To illustrate the idea of the proposed method step by
step, we apply the R-SADA method for a small dataset
with 4 variables collected over 10 time points. These

variables are randomly generated from the standard
normal distribution, except that the variable X3 tð Þ has
a mean shift of magnitude 3 at times t ¼ 6 � 10: The
algorithm is applied with q ¼ 2 (two variables can be
observed at each time), k ¼ 0:3, and lmin ¼ 1:5:
Table 1 shows the values of these variables at each
acquisition time (the Xi tð Þ columns), as well as the
evolution of the dynamic augmented vector and mon-
itoring statistic (the gi tð Þ and y tð Þ columns). In par-
ticular, Table 1 also demonstrates how the sampling
layout evolves over time based on the online measure-
ments. The variables being observed at time t are
shaded in the Xi tð Þ columns. At times t ¼ 1 � 5 when
the system is IC, the sampling strategy observes all
the variables with similar frequencies. However, after
the shift occurs in X3 tð Þ, the R-SADA method
observes a very unusual observation X3 7ð Þ ¼ 3:397,
which indicates that X3 tð Þ is highly likely the largest
variable among all four variables. And thus, all ele-
ments in the augmented vector change in time: g3 tð Þ
becomes very large while all other elements are almost
0. This change in the augmented vector further leads
to two results: (1) the monitoring statistic y tð Þ has a
significant boost as g tð Þ is far from its expectation g;
(2) The increase in g3 tð Þ leads to an increase in S 1ð Þ

3, t ,
and thus the algorithm tends to keep observing X3 tð Þ
at the following times.

Meanwhile, Table 2 shows the monitoring and
sampling procedures of the NAS algorithm proposed
in Xian, Wang, and Liu (2018) on the same data.
Recall that the NAS algorithm uses fixed imputation
parameters to construct the generalized anti-rank indi-
cator. In addition, it utilizes an artificial variable 0 as
a reference point. Comparing to the R-SADA method,
the NAS algorithm constructs the generalized anti-
rank indicator based on only the comparisons among
observable variables; however, it does not utilize the
actual observed values, and thus may lose some infor-
mation. For example, X2 tð Þ is observed more than
needed in the IC state as the fixed OC penalty accu-
mulates there, due to the reason that the algorithm
only considers the relative rank among observable

Table 1. Illustration data and evolution of statistics by implementing the proposed R-SADA method.
t X1 tð Þ X2 tð Þ X3 tð Þ X4 tð Þ g1 tð Þ g2 tð Þ g3 tð Þ g4 tð Þ y tð Þ
1 0.015 0.627 0.075 0.352 0.000 0.360 0.320 0.320 0.287
2 �0.697 0.528 0.059 1.797 0.346 0.308 0.000 0.346 0.160
3 0.264 0.872 �1.446 �0.701 0.253 0.494 0.253 0.000 0.238
4 �0.120 �0.639 0.577 �0.360 0.078 0.000 0.461 0.461 0.057
5 �0.136 �1.349 �1.270 0.267 0.404 0.404 0.000 0.192 0.062
6 �0.045 �0.799 2.235 0.862 0.096 0.000 0.452 0.452 0.101
7 �0.056 0.514 3.397 0.756 0.000 0.000 1.000 0.000 1.339
8 0.401 �1.341 3.375 1.125 0.000 0.000 1.000 0.000 3.526
9 0.729 �2.378 2.726 �0.323 0.004 0.004 0.992 0.000 6.008
10 0.318 �0.511 2.998 1.607 0.002 0.002 0.996 0.000 8.667
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variables although the actual observations of X2 tð Þ are
not too suspicious on an absolute scale of the distri-
bution. For the same reason, the true OC variable
X3 tð Þ is observed at a later time point than the R-
SADA method. Even after X3 tð Þ is observed and
found to be suspicious at and after time 8, the
increase in the monitoring statistic y tð Þ is less notice-
able since it uses fixed imputation parameters in the
generalized anti-rank indicator. As a result, this
example clearly illustrates the superiority of the R-
SADA strategy for mean shift detection.

4. Simulation results

In the simulation study, we evaluate the performance
of the proposed R-SADA method and compare it with
some representative baseline methods. Throughout
this section, we consider in total p ¼ 100 i.i.d. varia-
bles. For the OC cases, n variables are randomly
selected to have an upward mean shift of magnitude
d: Throughout this section, the IC ARL is set to be
370, and all the results are based on 5000 simula-
tion runs.

4.1. Parameter lmin of the R-SADA method

First of all, we observe how the parameter lmin affects
the performance of the proposed method. Recall that

lmin is a unique parameter in the proposed method
representing the interested-smallest mean shift, as a
replacement for the unknown true mean shift lOC: In
this simulation, each variable independently follows
the standard normal distribution N 0, 1ð Þ: There are
q ¼ 10 observable variables at each time, and only
one variable has a mean shift in the OC scenario
(n ¼ 1). Figure 1 shows the comparison between dif-
ferent values of lmin under different mean shifts d: In
particular, the x-axis of this figure represents the mag-
nitude of the mean shifts, and the y-axis represents
the log transformation of the OC ARL (ARL1) for the
proposed R-SADA method under different OC scen-
arios. As shown in Figure 1, ARL1 decreases as the
magnitude of mean shifts increases. This agrees with
our expectation as larger mean shifts lead to more sig-
nificant changes in the monitoring statistics and thus
result in a quicker detection of the OC status. There
are 6 curves in Figure 1, representing the log of ARL1
of the R-SADA method under the selections of lmin ¼
0:5, 1:0, � � � , 3:0, respectively. It can be observed
that a smaller lmin works better for smaller mean
shifts, and a larger lmin helps detect larger mean shifts
more quickly. For example, using lmin ¼ 3:0 leads to
the quickest detection for the mean shift d ¼ 3:0
among all the considered values of lmin: However, it
also results in the largest ARL for small mean shifts
such as d ¼ 0:5: When there is a large shift, the OC
variable with a large mean shift can be quickly noticed
once it is observed by the limited resources. Thus, a
large value of lmin helps find these OC variables more
quickly since it enables reallocating the resources
more frequently to the unobservable variables. For
small shifts, it requires the OC variables to be
observed for a longer time before raising an alarm.
Thus, a smaller value of lmin allows the resources to
be reallocated less frequently and concentrates more
on the suspicious variables. Figure 1 shows that prac-
titioners should appropriately choose the value of lmin

based on the prior knowledge of the shifts and the
application context. If such information is unknown
before monitoring the process, we recommend using a

Figure 1. Comparison of OC ARLs for different values of the
parameter lmin:

Table 2. Illustration data and evolution of statistics by implementing the NAS method.
t X1 tð Þ X2 tð Þ X3 tð Þ X4 tð Þ 0 n1 tð Þ n2 tð Þ n3 tð Þ n4 tð Þ n5 tð Þ y tð Þ
1 0.015 0.627 0.075 0.352 0 0.000 0.450 0.300 0.300 0.000 0.241
2 �0.697 0.528 0.059 1.797 0 0.300 0.450 0.000 0.300 0.000 0.390
3 0.264 0.872 �1.446 �0.701 0 0.300 0.450 0.300 0.000 0.000 0.524
4 �0.120 �0.639 0.577 �0.360 0 0.000 0.000 0.300 0.300 0.250 0.133
5 �0.136 �1.349 �1.270 0.267 0 0.300 0.000 0.000 0.300 0.250 0.217
6 �0.045 �0.799 2.235 0.862 0 0.300 0.000 0.300 0.450 0.000 0.136
7 �0.056 0.514 3.397 0.756 0 0.000 0.300 0.300 0.450 0.000 0.203
8 0.401 �1.341 3.375 1.125 0 0.300 0.300 0.450 0.000 0.000 0.025
9 0.729 �2.378 2.726 �0.323 0 0.300 0.300 0.450 0.000 0.000 0.209
10 0.318 �0.511 2.998 1.607 0 0.300 0.000 0.450 0.300 0.000 0.390

JOURNAL OF QUALITY TECHNOLOGY 9



moderate value, e.g., lmin ¼ 1:5 as it has a relatively
good performance for different magnitudes of mean
shifts. As a result, lmin is selected to be 1:5 in the
simulations below.

4.2. Monitoring normal data

In this simulation, we compare the R-SADA method
to several popular baseline methods to thoroughly
understand its performance. To be specific, the follow-
ing methodologies are considered: (1) the proposed R-
SADA method, (2) the TRAS algorithm which is
based on the conventional univariate CUSUM statis-
tics and a constant imputation parameter to deal with
partial observations, (3) the top-r CUSUM procedure
proposed in Mei (2011) which assumes all variables
are observable, and (4) the NAS algorithm which is
nonparametric and also uses a constant imputation
parameter for tackling partial observations. Please
note that only the top-r CUSUM procedure assumes
full observations among the four competing methods.
Besides, the random sampling method is not consid-
ered here as an additional benchmark since it has

been demonstrated to be inferior to the TRAS and
NAS algorithms. We compare the OC ARLs (ARL1)
under different combinations of the number of
observable variables q, the number of shifted
variables n, and the magnitude of mean shift d: The
following value combinations are considered in
this simulation: q ¼ 10, 20, 30, n ¼ 5, 10, and d ¼
1:0, 2:0, 3:0: For the R-SADA and top-r CUSUM
algorithms, we set lmin ¼ 1:5: For the TRAS proced-
ure, we set lmin ¼ 1:5, and the constant imputation
parameter D ¼ 0:10, which are recommended in Liu,
Mei, and Shi (2015). Moreover, the number of sum-
mands r in the top-r monitoring statistic is chosen to
be the same as the number of OC variables n in the
TRAS and top-r CUSUM procedures for all OC scen-
arios, which means r ¼ n for all cases shown in
Tables 3–5. This parameter setting, as mentioned in
Mei (2011), leads to the best performance in these
benchmark methods. However, this comparison is a
little unfair for our proposed method, as in practice
we commonly do not know the number of OC varia-
bles and thus how to decide the appropriate number
of summands in the benchmark methods can be quite

Table 3. ARL1 and corresponding standard errors (values in the parenthesis) of the R-SADA, TRAS, top-r CUSUM, and NAS
algorithms under different combinations of q, n, and d for normal distribution.

n ¼ 5 n ¼ 10

R-SADA TRAS top-r CUSUM NAS R-SADA TRAS top-r CUSUM NAS

q ¼ 10
d ¼ 1:0 36.1 (.46) 20.0 (.11) 9.08 (.05) 40.33 (.50) 21.8 (.27) 14.0 (.07) 6.26 (.02) 26.2 (.46)
d ¼ 2:0 7.09 (.08) 8.66 (.05) 3.32 (.01) 9.07 (.07) 4.63 (.05) 6.48 (.02) 2.58 (0.01) 7.49 (.06)
d ¼ 3:0 3.75 (.04) 6.71 (.03) 2.09 (.00) 7.66 (.05) 2.51 (.02) 5.00 (.02) 1.97 (0.00) 5.63 (.03)

q ¼ 20
d ¼ 1:0 12.1 (.20) 12.2 (.08) 9.08 (.05) 14.65 (.29) 7.85 (.12) 8.08 (.04) 6.26 (.02) 12.2 (.25)
d ¼ 2:0 3.23 (.04) 5.39 (.02) 3.32 (.01) 6.16 (.09) 2.20 (.03) 4.07 (.01) 2.58 (0.01) 5.32 (.07)
d ¼ 3:0 1.88 (.02) 4.24 (.02) 2.09 (.00) 4.58 (.06) 1.46 (.01) 3.25 (.01) 1.97 (0.00) 4.23 (.06)

q ¼ 30
d ¼ 1:0 10.2 (.16) 10.6 (.06) 9.08 (.05) 13.6 (0.23) 6.46 (.10) 6.96 (.03) 6.26 (.02) 11.5 (.19)
d ¼ 2:0 2.83 (.03) 4.68 (.02) 3.32 (.01) 5.45 (.05) 2.08 (.02) 3.61 (.01) 2.58 (.01) 4.25 (.05)
d ¼ 3:0 1.71 (.02) 3.68 (.01) 2.09 (.00) 3.74 (.04) 1.42 (.01) 2.90 (.01) 1.97 (.00) 3.06 (.03)

Table 4. ARL1 and corresponding standard errors (values in the parenthesis) of the R-SADA, TRAS, top-r CUSUM, and NAS
algorithms under different combinations of q, n, and d for t 3ð Þ distribution.

n ¼ 5 n ¼ 10

R-SADA TRAS top-r CUSUM NAS R-SADA TRAS top-r CUSUM NAS

q ¼ 10
d ¼ 1:0 39.5 (.62) 31.6 (.19) 13.3 (.09) 38.6 (.47) 29.4 (.53) 21.9 (.11) 8.14 (.04) 32.4 (.46)
d ¼ 2:0 9.90 (.09) 12.4 (.05) 5.20 (.02) 15.2 (.14) 7.58 (.07) 9.19 (.03) 3.84 (.01) 13.3 (.12)
d ¼ 3:0 4.47 (.05) 9.78 (.04) 4.22 (.01) 10.5 (.09) 3.33 (.03) 7.14 (.03) 3.24 (.01) 9.66 (.08)

q ¼ 20
d ¼ 1:0 28.5 (.55) 21.3 (.13) 13.3 (.09) 32.5 (.54) 19.1 (.34) 14.4 (.08) 8.14 (.04) 21.9 (.44)
d ¼ 2:0 5.11 (.06) 8.38 (.03) 5.20 (.02) 10.2 (.09) 3.93 (.05) 6.24 (.02) 3.84 (.01) 8.72 (.06)
d ¼ 3:0 2.52 (.03) 6.56 (.02) 4.22 (.01) 8.29 (.06) 2.16 (.02) 4.96 (.02) 3.24 (.01) 6.00 (.04)

q ¼ 30
d ¼ 1:0 22.3 (.46) 18.8 (.11) 13.3 (.09) 24.2 (.45) 16.8 (.30) 12.6 (.06) 8.14 (.04) 18.9 (.46)
d ¼ 2:0 5.01 (.06) 7.34 (.03) 5.20 (.02) 8.63 (.07) 4.02 (.05) 5.54 (.02) 3.84 (.01) 7.00 (.06)
d ¼ 3:0 2.46 (.03) 5.72 (.02) 4.22 (.01) 6.49 (.05) 2.05 (.02) 4.42 (.01) 3.24 (.01) 5.60 (.03)
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challenging. For the NAS method, the parameters
are chosen as: D ¼ 0:0105 for q ¼ 10, D ¼ 0:0120
for q ¼ 20, and D ¼ 0:0135 for q ¼ 30: The results of
this simulation are summarized in Table 3.

From Table 3, it can be seen that larger n and
larger d both lead to shorter ARL1 for all the four
methods. This is because n and d reflect the severity
level of OC scenarios, and a higher severity level of
OC scenarios is more noticeable by monitoring
schemes. Furthermore, the number of observable vari-
ables q has a significant impact on the R-SADA,
TRAS, and NAS algorithms as they all assume only q
variables are available at each time. The larger q is,
the more information we can obtain from the process,
which thus leads to quicker detection. On the con-
trary, since the top-r CUSUM procedure requires that
all the variables are observable, the ARL1’s of the top-
r CUSUM procedure are invariant of the values of q:

We first compare the differences between the R-
SADA and the TRAS algorithms. For small q (q ¼ 10)
and small mean shifts (d ¼ 1:0), the TRAS algorithm
shows better performance. This is because the TRAS
algorithm is based on the conventional CUSUM
scheme, which has an advantage in detecting small
mean shifts. However, the R-SADA method is based
on the order statistics, and thus the change in the
augmented vector g tð Þ is less sensitive when the mean
shift is small. In particular, when the monitoring
resources are limited, an OC variable with a small
mean shift can hardly be observed for a long time,
and the increase in g tð Þ for the observed OC variables
may not be significant to raise an alarm. When the
monitoring resources are relatively adequate (q ¼ 20
and 30), it allows the OC variables with small mean
shifts (d ¼ 1:0) to be observed for a longer time, and
thus the R-SADA and TRAS algorithms have very
similar performances in these scenarios. When the
OC variables have moderate to large mean shifts

(d ¼ 2:0 and 3:0), the proposed R-SADA method
shows significant advantages compared to TRAS algo-
rithm. This can be explained by the framework of the
R-SADA method that once an OC variable is
observed, the distributions of all elements of g tð Þ
are changed according to the online observations.
Therefore, the R-SADA method can quickly trigger an
alarm even though only few OC variables with moder-
ate to large shift are observed.

The comparison between the R-SADA method and
the top-r CUSUM algorithm is also very interesting.
When there are only q ¼ 10 observable variables, the
top-r CUSUM algorithm significantly outperforms the
R-SADA method since it assumes full observations of
the process, which is consistent with our expectation.
When more monitoring resources are available
(q ¼ 20 and 30), the performance of the R-SADA
method is a little worse than the top-r CUSUM algo-
rithm for small mean shifts (d ¼ 1:0); nonetheless, for
moderate to large mean shifts (d ¼ 2:0 and 3:0), the
R-SADA method performs very similar to, or even
slightly better than the top-r CUSUM algorithm. This
is surprising since the R-SADA method requires only
20% (q ¼ 20) or 30% (q ¼ 30) of the monitoring
resources that the top-r CUSUM algorithm utilizes,
but it achieves better performance. Recall that the two
algorithms are based on two different schemes when
constructing the monitoring statistics. As the R-SADA
method depends on the rank information, the aug-
mented vector g tð Þ is naturally more sensitive to large
mean shifts, i.e., the distribution of all elements in
g tð Þ quickly changes as the mean shifts occur, which
thus triggers an alarm more quickly. In contrast, the
disadvantage of the top-r CUSUM procedure can be
explained in the following two aspects: (1) from the
perspective of local statistics, it is well-known that the
top-r CUSUM scheme is more efficient to detect small
shifts compared to large shifts; (2) from the

Table 5. ARL1 and corresponding standard errors (values in the parenthesis) of the R-SADA, TRAS, top-r CUSUM, and NAS
algorithms under different combinations of q, n, and d for Poisson distribution.

n ¼ 5 n ¼ 10

R-SADA TRAS Top-r CUSUM NAS R-SADA TRAS Top-r CUSUM NAS

q ¼ 10
d ¼ 1:0 22.9 (.48) 18.8 (.12) 10.99 (.05) 27.7 (.61) 13.4 (.24) 13.0 (.07) 7.52 (.03) 25.8 (.59)
d ¼ 2:0 5.47 (.07) 9.23 (.05) 5.10 (.01) 11.1 (.10) 3.54 (.04) 6.74 (.03) 3.90 (.01) 9.71 (.09)
d ¼ 3:0 2.74 (.03) 6.93 (.04) 3.48 (.01) 7.88 (.05) 1.81 (.02) 5.00 (.02) 2.94 (.00) 6.92 (.04)

q ¼ 20
d ¼ 1:0 12.1 (.22) 14.7 (.08) 10.99 (.05) 19.4 (.49) 7.39 (.12) 9.99 (.05) 7.52 (.03) 12.3 (.31)
d ¼ 2:0 3.30 (.04) 7.05 (.03) 5.10 (.01) 7.37 (.11) 2.22 (.02) 5.22 (.02) 3.90 (.01) 6.49 (.09)
d ¼ 3:0 1.68 (.01) 5.24 (.02) 3.48 (.01) 5.76 (.07) 1.25 (.01) 3.92 (.01) 2.94 (.00) 4.38 (.06)

q ¼ 30
d ¼ 1:0 11.8 (.20) 13.0 (.07) 10.99 (.05) 16.8 (.34) 7.35 (.11) 8.96 (.04) 7.52 (.03) 10.3 (.18)
d ¼ 2:0 3.12 (.03) 6.17 (.02) 5.10 (.01) 6.59 (.07) 2.08 (.02) 4.72 (.01) 3.90 (.01) 5.43 (.07)
d ¼ 3:0 1.51 (.01) 4.54 (.01) 3.48 (.01) 5.16 (.04) 1.17 (.01) 3.53 (.01) 2.94 (.00) 4.27 (.03)
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perspective of constructing global monitoring statis-
tics, the top-r scheme takes only top r summands that
may be related to the underlying shifts in the moni-
toring statistics (while the R-SADA method takes all p
summands), and thus cannot react to large shifts as
quickly as the R-SADA method.

Finally, the NAS algorithm has the worst overall
performance because it is a nonparametric method
and thus does not utilize the distributional informa-
tion. Though it also considers the rank-based
approach, the NAS algorithm introduces a constant
imputation parameter for unobservable variables. In
contrast, the R-SADA method dynamically determines
the augmented vector and thus achieves a better mon-
itoring performance.

4.3. Monitoring t-distributed data

We then study the performance of these methods
when the variables follow non-normal distributions. In
this study, we consider t distributions with the degree
of freedom 3. Accordingly, the augmented vectors or
local statistics of the three parametric methods (the R-
SADA, TRAS and top-r CUSUM algorithms) are
designed based on the likelihood of t 3ð Þ distribution.
The parameters for the R-SADA and top-r CUSUM
procedures are selected as lmin ¼ 1:5: The parameters
for the TRAS algorithm are selected as lmin ¼ 1:5, and
D ¼ 0:10: For the NAS method, the parameters are
chosen as: D ¼ 0:0105 for q ¼ 10, D ¼ 0:0120
for q ¼ 20, and D ¼ 0:0135 for q ¼ 30: The results of
this simulation are summarized in Table 4.

The results in Table 4 are similar to those in
Table 3 where variables follow normal distributions.
Though the performance for small shifts is compro-
mised as there are more outliers for t distributions,
the R-SADA method still demonstrates a significant
advantage for detecting moderate to large mean shifts.

4.4. Monitoring poisson data

In this subsection, we consider the Poisson distribu-
tions with parameter k ¼ 20: Accordingly, the aug-
mented vectors or local statistics of the three
parametric methods (the R-SADA, TRAS and top-r
CUSUM algorithms) are designed based on Poisson
likelihood. The parameters for the R-SADA and top-r
CUSUM procedures are selected as lmin ¼ 1:5: The
parameters for the TRAS algorithm are selected as
lmin ¼ 1:5, and D ¼ 0:10: For the NAS method, the
parameters are chosen as: D ¼ 0:0105 for q ¼ 10,
D ¼ 0:0120 for q ¼ 20, and D ¼ 0:0135 for q ¼ 30:

The results of this simulation are summarized in
Table 5.

The results in Table 5 are also very similar to those
in Table 3 where variables follow normal distributions.
In other words, the R-SADA method still demon-
strates a significant advantage for detecting moderate
to large mean shifts, or when more monitoring
resources are available (q ¼ 20 and 30).

5. Case study

In this section, we will present a case study of the
proposed R-SADA method using an example of solar
flare detection. Solar flares are sudden releases of
energy at the surface of the sun. When the solar flare
occurs, the sun ejects electromagnetic waves to the
vicinity of the earth, and the particles involved can be
hazardous to spacecraft, satellites, astronauts in space,
as well as terrestrial facilities like electrical grids. To
avoid these harmful effects, it is significantly import-
ant to monitor the process and trigger an alarm as
soon as the solar flare occurs. To monitor solar flares
in practice, satellites with cameras in space take con-
secutive optical observations, which can produce a
large number of solar images (observations) every
second, resulting in about 1.5 TB of data every day.
While such big data are recorded and available for
analysis offline, the satellites are only able to send par-
tial observations back to earth for real-time analysis
due to the limited transmission rate (Aschwanden
et al. 2013). In other words, conventional monitoring
procedures which assume full observations of the data
streams cannot be applied here to online detect the
occurrence of solar flares. Specifically, this study con-
siders that only q variables (pixels of each image) are
observable at each data acquisition time.

In this example, the longitudinal data of each pixel
in the captured images can be regarded as one data
stream. The dataset includes in total 232� 146 ¼
33872 pixels and T ¼ 250 frames. Two apparent solar
flares are observed at time t ¼ 137 � 152 and t ¼
166 � 218: The background information of these data
has been removed by pre-centering and pre-scaling
using the mean and standard deviation of the data in
the time t ¼ 1 � 50: The residuals can be regarded as
approximately normally distributed (Xie, Huang, and
Willett 2013). To apply online monitoring algorithm
using partial observations, we assume that there
are q ¼ 500 and q ¼ 1000 monitoring resources avail-
able, respectively. We then apply the R-SADA and
TRAS algorithms to detect solar flare occurrences and
compare their performance. For both two algorithms,
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the parameter lmin is set as 4 since the occurrence of
the solar flare incurs large mean shifts. Besides, the
imputation parameter D for the TRAS algorithm is set
to be 0:05 for q ¼ 500 and 0:10 for q ¼ 1000, as they
lead to the optimal performance compared to other
choices. To set control limits for the two control
charts, the data for time frames t ¼ 51 � 100 are
bootstrapped to determine the control limits h corre-
sponding to an IC ARL ARL0 ¼ 1000:

The monitoring statistics for the solar flare detection
of the R-SADA and TRAS algorithms are shown in
Figures 2 and 3, respectively. The plots (a) and (b) in
these two figures correspond to the scenarios
of q ¼ 500 and q ¼ 1000: When q ¼ 1000, the two
algorithms have similar performances: the R-SADA
method detects the occurrence at t ¼ 140, and the
TRAS algorithm detects the occurrence at t ¼ 142:
However, when q ¼ 500, the performance of the TRAS
algorithm deteriorates fast and detects the shift at t ¼
154; On the contrary, the R-SADA method detects the
shift at t ¼ 142: Since the solar flares incur very large
mean shifts, the proposed R-SADA method has an

obvious advantage in detecting such mean shifts though
the number of observable variables is only 500. This
result is consistent with the ones in the simulations.

To provide more insights on the advantage of the
R-SADA method, Figure 4 shows a list of heat maps
of the original images, and the augmented vector and
local statistics of the R-SADA and TRAS algorithms.
In these heat maps, the data values are represented in
different colors, where smaller values are closer to red
and larger values are brighter and closer to yellow.
Figures (a) – (c) correspond to the process when t ¼
120 and the process is IC, whereas Figures (d) – (f)
show the process when t ¼ 150 and the solar flare
occurs. In particular, Figures (a) and (d) are the heat
maps of the original solar data, where an apparent
solar flare can be observed in Figure (d). Figures (b)
and (e) show the heat maps of the augmented vector
in the R-SADA method at t ¼ 120 and t ¼ 150: It
should be noted that these two heat maps are plotted
in the same color range. At time t ¼ 120, there is no
obvious indication of the process being OC as the ele-
ments of the augmented vector are not far from their

Figure 3. Monitoring statistics for the TRAS algorithm, when (a) q ¼ 500, and (b) q ¼ 1000:

Figure 2. Monitoring statistics for the R-SADA method, when (a) q ¼ 500, and (b) q ¼ 1000:
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IC means. However, when t ¼ 150, all the elements of
the augmented vector decrease dramatically for the
unobservable variables, as we can see that most pixels
in Figure (e) get closer to red. In addition, at t ¼ 150,
the maximum value of the variables that the R-SADA
method observes is 8.013. The observation of such an
OC variable leads to the significant changes in the
entire augmented vector, which contributes to a
quicker OC alarm. In contrast, Figures (c) and (f) show
the heat maps of the local statistics for the TRAS algo-
rithm when t ¼ 120 and t ¼ 150: It can be observed
that only the statistics of the observed OC variables
have significant changes when the solar flare occurs. As
a result, Figure 4 clearly highlights the main idea and
the advantage of the proposed R-SADA method.

6. Conclusions

In recent years, resource constraints have been well
recognized as an essential challenge during online

monitoring of big data streams by practitioners.
Without access to full information about the process,
it is critically important to effectively allocate monitor-
ing resources and determine the status of the process,
since the OC scenarios can be very complicated and
hard to be noticed. In this paper, a rank-based sam-
pling algorithm based on data augmentation is pro-
posed to quickly detect the mean shifts in a process
when only a limited portion of observations are avail-
able at each acquisition time. Specifically, our novel
idea is to dynamically and analytically augment the
unobservable data based on the rank information of
the full observation, which facilitates the allocation of
monitoring resources to OC variables and quick detec-
tion of process shift. With the dynamic augmentation,
the proposed R-SADA method can simultaneously
change all the elements of the augmented vector even
when only limited OC variables are observed at a time.
This nice characteristic allows us to leverage all the ele-
ments of the augmented vector to construct an

Figure 4. Heat map of the solar data, the augmented vector and local statistics for the R-SADA and TRAS algorithms
when q ¼ 1000: Figures (a) – (c) shows the original solar data, the augmented vector for the R-SADA method, and the local statis-
tics for the TRAS algorithm at time t ¼ 120, respectively. Figures (d) – (f) shows the original solar flare data, the augmented vector
for the R-SADA method, and the local statistics for the TRAS algorithm at time t ¼ 150, respectively.
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effective global monitoring statistic, and thus quickly
detect the OC status. Two theoretical properties are
also investigated for the proposed R-SADA method,
which guarantees its sampling efficiency in both the IC
and OC scenarios. Simulation studies and a real case
study on real-time solar flare detection are conducted
to demonstrate the advantage of the proposed method.

There are some topics to be further studied related
to the proposed R-SADA method. For example, the
proposed method is less sensitive to small mean shifts.
A better strategy of augmenting the unobservable vari-
ables for small mean shifts detection is desired to be
explored. Besides, how to generalize the augmentation
method, e.g., by relaxing the i.i.d. assumption of the
variables, needs further investigation. Last but not
least, it will be very interesting to theoretically
investigate the detection delay of the proposed
monitoring and adaptive sampling strategy under vari-
ous OC scenarios.
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Appendix A: Derivation of Equations (7) – (9)

In this appendix, we derive the Equations (7) – (9) on the
expression of the augmented vector.

As a result of the sparse shift assumption, Equation (3)
can be further calculated based on Equation (6) that

gj tð Þ ¼ P nj tð Þ ¼ 1jXO tð Þ
� �

¼
Xp
l¼1

P nj tð Þ ¼ 1, jOC ¼ ljXO tð Þ
� �

:

(14)

Recall that i tð Þ ¼ argmaxj2O tð Þ Xj tð Þ is the index of the
largest observable variable at time t: To solve Equation (14),
we consider the following three cases:

(1) If j 2 O tð Þ and j 6¼ i tð Þ, then naturally

P nj tð Þ ¼ 1, jOC ¼ ljXO tð Þ
� �

¼ 0 (15)

for any l since P nj tð Þ ¼ 1jXO tð Þ
� �

¼ 0: Therefore
gj tð Þ ¼ 0 in this case.

(2) If j ¼ i tð Þ, then

P nj tð Þ ¼ 1, jOC ¼ ljXO tð Þ
� �

¼ P nj tð Þ ¼ 1jjOC ¼ l, XO tð Þ
� �

P jOC ¼ ljXO tð Þ
� �

¼ P Xj tð Þ>Xm tð Þ, 8m 62 O tð ÞjjOC ¼ l
� �

P jOC ¼ ljXO tð Þ
� �

:

(16)
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(3) If j 62 O tð Þ, then

P nj tð Þ ¼ 1, jOC ¼ ljXO tð Þ
� �

¼ P nj tð Þ ¼ 1jjOC ¼ l, XO tð Þ
� �

P jOC ¼ ljXO tð Þ
� �

¼ PðXj tð Þ > Xi tð Þ, Xj tð Þ > Xm tð Þ,
8m 62 O tð Þ and m 6¼ jjOC ¼ lÞP jOC ¼ ljXO tð Þ

� �
:

(17)

In the above equations,

P jOC ¼ ljXO tð Þ
� �

¼ p XO tð ÞjjOC ¼ l
� �

p jOC ¼ lð ÞPp

l¼1
p XO tð ÞjjOC ¼ l
� �

p jOC ¼ lð Þ

¼ p XO tð ÞjjOC ¼ l
� �

glPp

l¼1
p XO tð ÞjjOC ¼ l
� �

gl
:

(18)

It is noteworthy that for some discrete distributions, i tð Þ ¼
argmaxj2O tð Þ Xj tð Þ may not be unique. In this case, we could
evenly distribute the probability to those variables with equal
values. For example, if j1, j2f g ¼ argmaxj2O tð Þ Xj tð Þ, let

P nj1 tð Þ ¼ 1, jOC ¼ ljXO tð Þ
� �

¼ P nj2 tð Þ ¼ 1, jOC ¼ ljXO tð Þ
� �

¼ 1
2
P Xj1 tð Þ>Xm tð Þ, 8m 62 O tð ÞjjOC ¼ l
� �

P jOC ¼ ljXO tð Þ
� �

(19)

Recall that it is assumed that all the variables are i.i.d.
(with CDF F and PDF f ). We can provide more detailed
formulas to calculate the value of gj tð Þ accordingly. Since all
the variables have the same distribution when the process is
IC, by symmetry we have

gj ¼ 1
p

for 8j 2 P and P Xj tð Þ ¼ max
l 62O tð Þ

Xl tð Þ
� �

¼ 1
p� q

for 8j 62 O tð Þ:
(20)

Then we can calculate based on Equations (14)-(17) as
follows. First of all,

P Xi tð Þ tð Þ>Xm tð Þ, 8m 62 O tð ÞjjOC ¼ l
� �
¼

F Xi tð Þ tð Þ
� �p�q, if l 2 O tð Þ,
F Xi tð Þ tð Þ
� �p�q�1F Xi tð Þ tð Þ�lmin

� �
, if l 62 O tð Þ:

8<
:

(21)

Accordingly, for j 62 O tð Þ,

P Xj tð Þ>Xi tð Þ, Xj tð Þ>Xm tð Þ, 8m 62 O tð Þ and m 6¼ jjjOC ¼ l
� �
¼ 1�P Xi tð Þ tð Þ>Xm tð Þ, 8m 62 O tð ÞjjOC ¼ l

� �� � � 1
p� q

¼
1�F Xi tð Þ tð Þ

� �p�q
� �

� 1
p� q

, if l 2 O tð Þ,

1�F Xi tð Þ tð Þ
� �p�q�1F Xi tð Þ tð Þ�lmin

� �� �
� 1
p� q

, if l 62 O tð Þ:

8>>><
>>>:

(22)

Besides, given that

p XO tð ÞjjOC ¼ l
� �
¼

f Xl tð Þ�lmin

� �Q
j2O tð Þ, j6¼lf Xj tð Þ

� �
, if l 2 O tð Þ,Q

j2O tð Þf Xj tð Þ
� �

, if l 62 O tð Þ,

8<
:

(23)

we can derive based on Bayes rule that

P jOC ¼ ljXO tð Þ
� �

¼ p XO tð ÞjjOC ¼ l
� �

glPp

l¼1
p XO tð ÞjjOC ¼ l
� �

gl

¼

f Xl tð Þ�lmin

� �
=f Xl tð Þð ÞP

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ þ p�qð Þ

, if l 2 O tð Þ,

1P
l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ þ p�qð Þ

, if l 62 O tð Þ:

8>>>><
>>>>:

(24)

In this way, we finish the proof that the augmented vec-
tor gj tð Þ can be calculated as follows:

(1) If j ¼ i tð Þ,

gj tð Þ ¼
F Xi tð Þ tð Þ
� �p�qP

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð ÞP

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ þ p�qð Þ

þ F Xi tð Þ tð Þ
� �p�q�1F Xi tð Þ tð Þ�lmin

� �
p�qð ÞP

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ þ p�qð Þ

:

(2) If j 2 O tð Þ and j 6¼ i tð Þ,
gj tð Þ ¼ 0:

(3) If j 62 O tð Þ,

gj tð Þ ¼
1�F Xi tð Þ tð Þ

� �p�q
� �P

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ

p�qð Þ
P

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ þ p�qð Þ

� �

þ 1�F Xi tð Þ tð Þ
� �p�q�1F Xi tð Þ tð Þ�lmin

� �
P

l2O tð Þf Xl tð Þ�lmin

� �
=f Xl tð Þð Þ þ p�qð Þ

:

Appendix B: Algorithm to find the threshold
value h

This appendix describes the detailed algorithm to estimate
the threshold value h for a given pre-scribed IC ARL,
ARL0, using collected historical IC data. This appendix is
inspired by Appendix D of Liu, Mei, and Shi (2015).

Initialization:
Set hmin and hmax as the initial lower and upper bounds

of h, respectively. Let h ¼ hminþhmax
2 , RL ¼ 1:

Repeat the following steps until the difference
RL�ARL0
�� is smaller than a small threshold:

1. Repeat the following steps for 5000 time:
a. Generate a bootstrap dataset with 5000 samples by

randomly drawing with replacement from the his-
torical data.
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b. Implement the R-SADA algorithm with threshold
h and record the index of the first OC sample, RL:

Update RL with the average of RL:

2. If RL > ARL0, let hmax ¼ h; otherwise, let hmin ¼ h:
Then let h ¼ hminþhmax

2 :

Appendix C: Proof of the IC property

In this Appendix, we will prove the IC property of the R-
SADA control chart in Section 3.3. First, we consider the
following two lemmas.

Lemma 1: If the variables are i.i.d., then Egj tð Þ < 1
p for

j 2 O tð Þ and Egj tð Þ > 1
p for j 62 O tð Þ when the process

is IC.
From Equation (7) and the fact that F Xi tð Þ tð Þ�lmin

� �
<

F Xi tð Þ tð Þ
� �

since lmin > 0, we can see that

gi tð Þ tð Þ < F Xi tð Þ tð Þ
� �p�q

: (25)

And when j 2 O tð Þ, gj tð Þ has probability 1
q to be nonzero

and probability q�1
q to be zero. Denote the cumulative distri-

bution function of Xi tð Þ tð Þ to be FXi tð Þ tð Þ xð Þ, then

FXi tð Þ tð Þ xð Þ ¼ P Xi tð Þ tð Þ � x
� � ¼ P Xj tð Þ � x, 8j 2 O tð Þ� �

¼ P Xj tð Þ � x
� �q ¼ F xð Þq:

(26)

Therefore, we can calculate that

Egj tð Þ <
1
q
E F Xi tð Þ tð Þ

� �p�q
h i

¼ 1
q

ð
F Xi tð Þ tð Þ
� �p�qdFXi tð Þ tð Þ xð Þ

¼ 1
q

ð
F xð Þp�qdF xð Þq ¼

ð
F xð Þp�1dF xð Þ ¼

ð1
0
yp�1dy ¼ 1

p
:

(27)

As gj tð Þ ¼ 1
p�q 1�gi tð Þ tð Þ
� �

for j 62 O tð Þ, we can derive
similarly that Egj tð Þ > 1

p for j 62 O tð Þ:
Lemma 2: There exists a time t0 such that S 1ð Þ

i, t � S 1ð Þ
j, t , for

all t � t0, j 2 P U and i 2 U:
We prove Lemma 2 via contradiction. Assume that there

exists some t � t0, j 2 P U and i 2 U such that S 1ð Þ
i, t >

S 1ð Þ
j, t: Then at time t þ 1, either i or j cannot be observed
since i 2 U and S 1ð Þ

i, t > S 1ð Þ
j, t: This means that i, j 62

O t þ 1ð Þ, and gi t þ 1ð Þ ¼ gj t þ 1ð Þ, then

S 1ð Þ
i, tþ1 ¼ S 1ð Þ

i, t þ gi t þ 1ð Þ
� �

Ctþ1�kð Þ=Ctþ1 >

S 1ð Þ
j, t þ gj t þ 1ð Þ

� �
Ctþ1�kð Þ=Ctþ1 ¼ S 1ð Þ

j, tþ1:
(28)

Then, by induction, we can see that the variable j cannot
be observed before variable i is observed. It means that j 2
U, which contradicts the assumption. Therefore, we have
proved Lemma 2.

Suppose that there exists a variable i 2 U: From Lemma 2,
we have proved that there exists a time t0 such that S 1ð Þ

i, t �
S 1ð Þ
j, t for any j 2 P U and t � t0: Suppose that a variable j 2

P U is observable at time t1 < t2 < ::: < tl � � � and t1 > t0:
Let xt ¼ Ct�k

Ct
(0 � xt < 1, t � t0). Then, we have that

Sð1Þj, tl ¼ xtl Sð1Þj, tl�1 þ gj tlð Þ
� �

¼ Sð1Þj, tl�1 þ gj tlð Þ � 1�xtlð Þ
S 1ð Þ
j, tl�1 þ gj tlð Þ

� �
:

(29)

Applying this derivation recursively on Sð1Þj, tl�i for i ¼
1, 2, � � � , tl � t0 � 1 and we can get

Sð1Þj, tl ¼ xtl Sð1Þj, tl�1 þ gj tlð Þ
� �

¼ Sð1Þj, t0 þ
Xtl

s¼t0þ1

gj sð Þ

�
Xtl

s¼t0þ1

1�xsð Þ S 1ð Þ
j, s�1 þ gj sð Þ

� �
:

(30)

Similarly, for i 2 U, we have that

Sð1Þi, tl ¼ Sð1Þi, t0 þ
Xtl

s¼t0þ1

gi sð Þ �
Xtl

s¼t0þ1

1�xsð Þ S 1ð Þ
i, s�1 þ gi sð Þ

� �
:

(31)

Note that S 1ð Þ
j, s�1 þ gj sð Þ ¼ 1

xs
Sð1Þj, s � 1

xs
Sð1Þi, s ¼

S 1ð Þ
i, s�1 þ gi sð Þ, according to Lemma 2. Given that gj tð Þ ¼
gi tð Þ if j 62 O tð Þ, it can be derived that

Sð1Þj, tl � S 1ð Þ
i, tl ¼ S 1ð Þ

j, t0 � S 1ð Þ
i, t0 þ

Xl
m¼1

gj tmð Þ�gi tmð Þ� �

�
Xtl

s¼t0þ1

1�xsð Þ S 1ð Þ
j, s�1 þ gj sð Þ

� �
� S 1ð Þ

i, s�1 þ gi sð Þ
� � �

� S 1ð Þ
j, t0 � S 1ð Þ

i, t0 þ
Xl
m¼1

gj tmð Þ�gi tmð Þ� �
:

(32)

From Lemma 1, Egj tmð Þ < 1
p < Egi tmð Þ for m ¼ 1,

� � � , l: Therefore,
Pl

m¼1 gj tmð Þ�gi tmð Þ� �
is a general ran-

dom walk with mean Egj tmð Þ � Egi tmð Þ < 0: Denote L�

be the minimal l such that
Pl

m¼1 gj tmð Þ�gi tmð Þ� �
<

S 1ð Þ
i, t0 � S 1ð Þ

j, t0 < 0, then P L�<1ð Þ ¼ 1 based on property of

general random walk (Ross (1996)). In other words, the

probability that there exists a finite l such that Sð1Þi, tl > Sð1Þj, tl is

1, according to Equation (32). Consequently, this means
that with probability 1, the above argument contradicts with
Lemma 2. As a result, we have proved that there exists no
such variable i 2 U, and thus U must an empty set with
probability 1.

Appendix D: Proof of the OC property

In this Appendix, we will prove the OC property of the R-
SADA method in Section 3.3. Without loss of generality,
here we focus on the case when k ¼ 0: Consider that at
time t > t0, the OC variable Xj� is observable (i.e.,
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j� 2 O tð Þ). Then Sð1Þj� , t > Sð1Þi, t for any variable i 62 O tð Þ:
Recall that j 1ð Þ, :::, j pð Þ are the variable indices such that
S 1ð Þ
j 1ð Þ , t � S 1ð Þ

j 2ð Þ , t � � � � � S 1ð Þ
j pð Þ , t: Define the difference between

the increments of augmented values on variable j� and
j qþ1ð Þ at time t þ n to be

Zj� , n ¼ gj� t þ nð Þ � gj qþ1ð Þ t þ nð Þ: (33)

Let Hj� ,N ¼PN
n¼1 Zj� , n, Gj� ,N ¼PN

n¼1 gj� t þ nð Þ, sH ¼
infN Hj� ,N � 0f g and sG ¼ infN Gj� ,N � 0


 �
: Under the

condition that N � sG, we claim that Gj� ,N

 �

is a general
random walk with a positive drift. From the definition of
sH , we can see that Hj� ,N > 0 for any N < sH � sG: This

further indicates S 1ð Þ
j� , tþN > S 1ð Þ

qþ1ð Þ, tþN for any N < sH � sG:

In other words, j� is always observed at and before time sH:
As a result, gj� t þ 1ð Þ � gj qþ1ð Þ t þ 1ð Þ, :::, gj� t þ sH�1ð Þ �
gj qþ1ð Þ t þ sH�1ð Þ are i.i.d. with mean E½gj� t þ Nð Þ �
gj qþ1ð Þ t þ Nð Þ	: Denote a tð Þ ¼

P
l2O tð Þf Xl tð Þ�lminð Þ=f Xl tð Þð ÞP

l2O tð Þf Xl tð Þ�lminð Þ=f Xl tð Þð Þþ p�qð Þ ,

b tð Þ ¼ p�qð ÞP
l2O tð Þf Xl tð Þ�lminð Þ=f Xl tð Þð Þþ p�qð Þ , F1 tð Þ ¼ F Xi tð Þ tð Þ

� �p�q

and F2 tð Þ ¼ F Xi tð Þ tð Þ
� �p�q�1F Xi tð Þ tð Þ�lmin

� �
: Then

E gj� t þ Nð Þ�gj qþ1ð Þ t þ Nð Þ
h i

� E


1
q

a tð ÞF1 tð Þ þ b tð ÞF2 tð Þð Þ

� a tð Þ 1�F1 tð Þð Þ
p� q

þ b tð Þ 1�F2 tð Þð Þ
p� q

 !�

¼ E a tð Þ pF1 tð Þ�q
q p�qð Þ þ b tð Þ pF2 tð Þ�q

q p�qð Þ

" #
¼ 1

q p�qð Þ

E a tð Þ pF1 tð Þ�q
� �þ b tð Þ pF2 tð Þ�q

� �� � � 1
q p�qð Þ

E a tð Þ þ b tð Þ½ 	E pF2 tð Þ�q
� �� � ¼ 1

q p�qð Þ pE F2 tð Þ½ 	�q
� �

> 0

(34)

Therefore, P sG ¼ 1ð Þ > 0, and P sH ¼ 1ð Þ > 0: This
leads to a conclusion that

P S 1ð Þ
j� , tþN�S 1ð Þ

qþ1ð Þ, tþN>0 for any N>0
� �

> 0, (35)

i.e., P j� 2 O t0ð Þ for any t0>t
� �

> 0: Thus, we have proved
the OC property.
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