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Abstract - On-line monitoring of quality variables and
data streams raises attention in fields of quality management
and statistical process control. Though much work has
been dedicated on it in the literature, some challenges
associated with designing distribution-free on-line control
schemes are yet to be addressed well. This paper proposes a
new distribution-free control chart for detecting both mean
shifts and variance shifts in a univariate process based
on nonparametric two sample goodness-of-fit test. It also
integrates the self-starting feature by using data-dependent
control limits set on-line instead of predetermined limits.
Simulation study shows that the chart has satisfactory in-
control run length performance given desired ARL and
robust detection capability for general out-of-control changes,
and is especially useful in short-run processes or start-up
stages.

Keywords - Statistical process control (SPC), nonpara-
metric, distribution-free, goodness-of-fit test

I. INTRODUCTION

In manufacturing, process quality is usually defined

inversely proportional to process variability [1]. Statistical

process control (SPC) schemes aim to monitor process

variables to ensure that these variables do not shift away

from the target values and the variance of them is accept-

ably small (usually smaller than certain threshed value

which is called control limit). Usually, we can formu-

late SPC as the following change-point model. For an

interested process variable X , we assume that there are

m0 reference samples X−m0+1, · · · , X0 collected when

the process is in control, and the ith observation, Xi is

collected over time following the change-point model:

Xi
i.i.d.∼

{
F0(x) for i = −m0 + 1, . . . , 0, 1, . . . , τ,

F1(x) for i = τ + 1, . . .
(1)

where τ is the unknown change point and F0(x) and

F1(x) are unknown in-control (IC) and out-of-control

(OC) distribution functions, respectively.

Since the first control chart was proposed by Shewhart

in 1920s, a large amount of control charts, such like

cumulative sum (CUSUM) charts and EWMA charts, have

been developed to improve SPC performance. Readers

could refer [1] and the references therein for a detailed

review. However, most of current SPC schemes assume the

process follows a normal distribution. This is simple but in

practice the true process distribution is usually complex,

such like being heavy tailed or skewed. Then charts with

normal assumption will be inaccurate. To address this

problem, distribution-free chart based on nonparametric

methods is useful. Its merit is that the practitioners need

not assume a particular distribution or do in-control prob-

ability calculations for the underlying process and the

associated performance remains valid for any distribution.

Current nonparametric charts are commonly based

on “standardized ranks” of the observations, i.e., using

empirical cumulative distribution function (ECDF) to rep-

resent the true process distribution. Reference [2] proposed

a Shewhart-type chart based on ranks within rational

groups. Reference [3] considered a CUSUM chart for

group observations based on the Wilcoxon signed-rank

statistic. Reference [4] proposed a CUSUM chart for

individual observations based on sequential ranks. Though

these CUSUM charts incorporate the sequential nature of

SPC and are effective in detecting small, persistent process

mean shifts, they need to know both IC and OC mean to set

up the control limits. Reference [5] described an EWMA

chart based on grouped signed-rank statistic. Reference

[6] proposed an EWMA chart based on the goodness-of-fit

test. Other relative work includes some change-point charts

such like [7] and [8] based on the Mann-Whitney test and

[9] based on the Kolmogorov-Smirnov and the Cramér-von

Mises tests. For a more detailed discuss about the practical

advantages of nonparametric charts and an overview of

current univariate nonparametric charts, readers could refer

to [10].

Most of these nonparametric charts focus on detecting

process mean shifts. However, the change of process mean

is usually masked or accompanied by an unsuspected

change of the process variance. Monitoring more gen-

eral process changes has become increasingly desirable.

Among the aforementioned charts, [2] is designed for

monitoring process variance when observations arrive in

batches rather than as individuals. Reference [6] and [9]

are designed for detecting both process mean and vari-

ance shifts. Unfortunately, they still have limitations and

are inefficient in detecting decrease in process variance.

Though decrease in variance receives little attention in

the literature since in practice it usually indicates quality

improvement instead of out of control, its influence on the

chart performance should not be ignored when combined

with mean shifts. For example, when the process under-

goes a simultaneous mean shift and decrease in variance,

the influence of the two change patterns on the chart

statistics would counteract in the sense that the later delays

the two charts above detecting the former. To avoid this

problem, a chart designed to detect variance shifts in both
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sides is preferable.

Furthermore, many existing nonparametric charts as-

sume that the process IC parameters are known. This,

however, is not realistic and these parameters need to

be estimated based on reference samples. But collection

of sufficient reference samples is sometimes infeasible or

costs much, and practitioners usually want to monitor the

process at start-up stages as early as possible. In these

cases, the estimated parameters may be inaccurate and

would add residual random variability to the run length

distribution as a systematic bias, thereby compromising

the chart performance [11]. One possible solution is to

use self-starting chart, which allows monitoring processes

from the start-up stages and not relying on many reference

samples [12]. To be more specific, self-starting chart treats

the reference samples as part of the ongoing data stream

and examines the consistency through the whole process.

Later [6], [8] and [9] successfully applied this idea to

nonparametric charts. Recently, [13] proposed a frame-

work of data-dependent self-starting monitoring where the

control limit sequence is designed on-line based on current

and previous observations rather than before monitoring.

This idea ensures the chart has satisfactory IC run length

especially for start-up stages and short-run processes.

This paper proposes a univariate distribution-free con-

trol chart to detect both process mean and variance shifts.

Motivated by [14] and [15], a powerful two sample

goodness-of-fit test is used to construct the monitoring

statistic. To address the problem of insufficient reference

sample set for distribution estimation, this chart integrates

the self-starting feature by using data-dependent dynamic

control limits [13]. Simulation study shows that given a

desired ARL, this chart has satisfactory IC run length for

any distribution, and robust detection power for general

OC shifts.

II. METHODOLOGY

A. Two sample goodness-of-fit test

Let S0 = {X−m0+1, . . . , X0} be i.i.d samples from

an unknown distribution function F0(x), and S1 =
{X1, . . . , Xn} be i.i.d samples from an unknown distribu-

tion function F1(x). It is of interest to test whether S0 and

S1 follow the same distribution, i.e., to test the hypothesis

H0 : F0(t) = F1(t) ∀t ∈ (0,∞).

H1 : F0(t) �= F1(t) for some t ∈ (−∞,∞).
(2)

Without strong assumptions on F0(x) and F1(x), many

nonparametric tests have been proposed, including the

Kolmogorov-Smirnov test, the Anderson-Darling test, the

Cramér-von Mises test, etc. Based on the nonparametric

likelihood ratio (NLR), [14] proposed a new approach to

construct a class of powerful one sample goodness-of-

fit tests, which proved to be more powerful than many

traditional tests. Later [6] used these tests in [14] to

construct an EWMA control chart and showed the chart

was effective for detecting process mean shifts and in-

crease in variance. However these one sample goodness-

of-fit tests have limitations when applied into sequential

SPC framework: If we consider the total sample set as

S = {X−m0+1
, . . . , Xn}, these tests only consider the

distribution difference between S1 and S but ignoring

the difference between S0 and S. To be more specific, if

we treat S0 as reference sample set and S1 as sequential

coming test sample set, the more samples S1 accumulates,

the more similarity S tends to have with S1, meaning

that the less powerful the chart is to detect the difference

between S1 and S(S0). Consequently, unless the chart

triggers an OC alarm soon after the process goes out of

control, it tends to be decreasingly effective. In contrast,

the two-sample goodness-of-fit test [15] overcomes this

problem by considering the difference between S1 and S,

and between S0 and S together. For each Xj , the two

sample NLR test can be expressed as

L(Xj) =
1∑

i=0

ni

(
F̂i(Xj) ln

F̂i(Xj)

F̂ (Xj)

+(1− F̂i(Xj)) ln
1− F̂i(Xj)

1− F̂ (Xj)

)
, (3)

where ni is the sample size of S0. F̂i(t) and F̂ (t) are the

ECDF’s based on Si and S respectively. Analogue to [15],

by placing a weight wi(Xj) on L(Xj) at different Xj

and aggregating all the weighted information of L(Xj),
we could get a very powerful test statistic compared with

many existing methods. Here we define the normalized

geometric mean of F̂i(Xj) and 1− F̂i(Xj) as the weight

function, i.e., wi(Xj) = [F̂i(Xj)(1 − F̂i(Xj))]
−0.5, and

summarize L(Xj) for every Xj as

Z =
n∑

j=1

1∑
i=0

ni

{√
F̂i(Xj)

1− F̂i(Xj)
ln

F̂i(Xj)

F̂ (Xj)

+

√
1− F̂i(Xj)

F̂i(Xj)
ln

1− F̂i(Xj)

1− F̂ (Xj)

}
. (4)

Note that other weight functions could also be considered,

but how to choose the weight is not the focus of this paper.

B. A Distribution-free Control Chart

Now we deploy the two sample goodness-of-fit test

into on-line sequential monitoring. When a new observa-

tion Xn comes, a sliding window is used to update S1,

i.e., Sn
1 = {Xn−w+1, Xn}, the rest samples are used as

updated Sn
0 = {X−m0+1, · · · , Xn−w} in the self-starting

view. Then the fix-sample test in (4) could be used to

get Zn. Figure 1 illustrates the framework of the chart.

To address more on recent samples, similar to [6], we

consider the weighted empirical distribution for Sn
1 and

replace F̂1(Xj) as

F̂λ
1 (Xj) =

1

n1

n∑
k=n−w+1

(1− λ)n−kI(Xk ≤ Xj)
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with

n1 =
n∑

k=n−w+1

(1− λ)n−k,

where λ could be regarded as a weighting parameter com-

monly used in EWMA charts. Then we get the monitoring

statistic Zλ
n as

Zλ
n =

n∑
j=1

(1− λ)n−j

aλ,n

1∑
i=0

ni

(√
F̂ ∗
i (Xj)

1− F̂ ∗
i (Xj)

ln
F̂ ∗
i (Xi)

F̂ (Xj)

+

√
1− F̂ ∗

i (Xj)

F̂ ∗
i (Xj)

ln
1− F̂ ∗

i (Xj)

1− F̂ (Xj)

)
(5)

with F̂ ∗
1 (Xj) = F̂λ

1 (Xj) and F̂ ∗
0 (Xj) = F̂0(Xj). Note

that Zλ
n is nonparametric since it only uses the rank

information of Xj’s rather than the magnitude information.

Therefore the chart based on two sample goodness-of-fit

test is distribution-free in the sense that its IC run-length

distribution is the same for all process distributions.

Based on this point, we could determine a certain

control limit such that the chart has satisfactory run-length

performance regardless of process distribution. Usually a

chart is considered to be satisfactory if its IC run length

distribution is close to a geometric distribution [16]. In

addition, it might be unacceptable if the specified IC ARL

(denoted as ARL0) is attained with an elevated probability

of false alarms in short runs as compared to the geometric

distribution. Here inheriting the idea of [13], we aim to find

the control limit sequence {Hn} such that the conditional

false alarm probability at each point given that there is no

false alarm before is a pre-specified constant α, i.e., for

1 < i < n and n > 1,

P(Zλ
1 > H1(α)) = α,

P(Zλ
n > Hn(α)|Zλ

i < Hi(α)) = α.
(6)

This is equivalent to perform a hypothesis test with the

type-I error α at each time point n. Based on Hi(α),
we define the following charting procedure, termed as

distribution-free two sample goodness-of-fit chart (abbre-

viated as 2SGoF), with the run-length

RL = min{n;Zλ
n ≥ Hn(α), n ≥ 1}. (7)

· · ·
Si
1 Si+1

1

· · · · · ·
Sn
1

Zi(S
i
1, S

i
0) Zi+1(S

i+1
1 , Si+1

0 ) Zn(Sn
1 , S

n
0 )

Xi−w Xi Xn−w Xn

Fig. 1. The framework of sliding window method for on-line monitoring.
Each circle represents one sample, w is the sliding window length.

III. PERFORMANCE STUDY

In this section, we present some simulation results

about the performance of 2SGoF and compare it with some

related approaches mentioned in the literature.

We consider the following distributions in our study:

(1) normal distribution; (2) t5, the student t distribution

with 5 degrees of freedom; (3) χ2
3, the chi-square distribu-

tion with 3 degrees of freedom. Without loss of generality,

for each distribution, we set the IC mean μ0 = 0, variance

σ2
0 = 1, reference sample size m0 = 100, sliding window

w = 58, and the desired ARL0=200. For OC settings,

we consider the following scenarios: (1) the process mean

shift of size δ, i.e., μ1 = μ0 + δ; (2) the process variance

shift of magnitude λ2,i.e., σ2
1 = λ2σ2

0 .

Other process change scenarios are also considered

and show that the general conclusions given below do not

change. These additional simulation results are available

from the authors on request. All the results in this section

are obtained from 10,000 replications.

A. In-control Performance

First, we study the IC run length distribution of the

2SGoF chart in terms of ARL0, standard deviation of the

run length (SDRL) and the false-alarm rate during the

first 30 observations, i.e., FAR = P(RL ≤ 30). Two

values of λ, 0.05 and 0.1 are considered for a better

illustration. In our settings with ARL0 = 200, if the run

length distribution is geometric, α should be 0.005 with

the corresponding SDRL = ARL0 and FAR = 0.140. As

Table I shows, for these three distributions, 2SGoF always

has satisfactory IC performance with ARL0 values almost

200, and its SDRL and FAR values are close to the ones

with geometric distribution. This can be understood as the

IC distribution of 2SGoF is exactly geometric, thereby

guaranteeing its feasibility for distribution-free process

monitoring.

B. Out-Control Performance

Next, we analyze the OC performance of 2SGoF

and compare it with some other self-starting work for

monitoring both process mean and variance, including the

nonparametric likelihood ratio-based EWMA chart (NLE)

[6], the parametric likelihood ratio Change Point model

(ChangePt) [17], and the nonparametric Cramér-von Mises

(CvM) model [9]. m0 = 100 satisfies the requirements for

TABLE I
IC PERFORMANCE OF THE 2SGOF WITH N0,1 , t5 AND χ2

3
OBSERVATIONS WHEN m0 = 100

λ = 0.1 λ = 0.05

ARL0 SDRL FAR ARL0 SDRL FAR

geometric 200.0 200.0 0.140 200.0 200.0 0.140

N0,1 200.0 199.4 0.141 199.0 196.2 0.142

t5 198.4 196.1 0.142 198.0 195.8 0.144

χ2
3 197.6 195.4 0.146 195.8 193.4 0.151
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TABLE II
OC ARL COMPARISON IN DETECTING LOCATION SHIFTS WHEN

m0 = 100 AND λ = 0.05; NUMBERS IN PARENTHESES ARE SDRL
VALUES.

δ 2SMGoF NLE ChangePt CvM

N0,1 0.25 92.3(114.9) 118.6(153.1) 138.6(153.4) 117.5(128.8)

0.5 29.1(29.3) 41.7(54.6) 51.6(54.4) 35.3(38.5)

1.0 11.1(5.5) 14.9(6.93) 13.3(7.9) 10.3(9.5)

2.0 5.3(1.94) 6.3(2.8) 4.7(1.8) 4.3(6.1)

4.0 3.6(1.0) 3.4(5.6) 2.1(0.6) 2.9(5.1)

t5 0.25 116.8(138.3) 121.5(145.5) 170.4(174) 122.2(133.9)

0.5 37.7(39.6) 57.6(74.3) 93.2(99.8) 44.2(50.9)

1.0 13.9(7.6) 19.5(10.2) 24.2(17.1) 12.3(11.5)

2.0 6.6(2.6) 9.1(3.9) 7.6 (3.4) 4.9(6.6)

4.0 4.1(1.2) 4.2(1.8) 3.0(1.0) 3.1(5.7)

χ2
3 0.25 54.1(75.4) 76.4(115.2) 197.4(147.1) 99.4(117.2)

0.5 18.7(9.2) 28.9(12.8) 109.7(109.2) 23.7(20.7)

1.0 10.0(3.9) 17.2(6.4) 22.7(11.7) 7.9(7.7)

2.0 5.9(2.0) 9.1(3.5) 6.5(2.4) 4.1(6.0)

4.0 3.9(1.2) 4.2(1.7) 2.5(0.7) 3.0(5.6)

starting other charts. We fix τ = 25 and only consider the

steady-state ARL, meaning that any series where an OC

signal occurs before the true change point τ is discarded.

To give a fair comparison, we also set the λ = 0.05
for NLE chart. As to ChangePt, since it is designed

with normal distribution assumption, for t5 and χ2
3 we

artificially tune its control limits to ensure that its ARL0

is still equal to the normal one, i.e., ARL0 = 200. This

kind of adjustments could only be used for simulation

comparison, but not applicable in practice since usually

the process is unpredictable.

Table II illustrates the simulation results for the charts

under a mean shift with δ = 0.25, 0.5, 1, 2, 4. For small

shifts (0 ≤ δ < 1), 2SGoF chart outperforms the other

three charts dominantly by a large margin. For moderate

and large mean shift (δ = 1, 2, 4), though 2SGoF responds

slightly slower than CvM (with at most 1 time point delay),

it still performs generally better than the other two charts.

Table III compares the charts in detecting either an

increasing or decreasing variance shift. We observe that

2SGoF is close to the best in general and has robust proper-

ties. When variance increases, NLE always has the fastest

response among the four charts, and 2SGoF performs

better than CvM and ChangePt. When variance decreases,

their performance is opposite: the three nonparametric

charts have less detection power than ChangPt and are

specially inefficient for λ2 = 0.75. But 2SGoF performs

alternatively better than NLE and CvM.

IV. CONCLUSION

This paper presents a univariate distribution-free con-

trol chart based on the two sample likelihood ratio test. As

analyzed in [14] and [15], this likelihood ratio test has bet-

ter performance than traditional nonparametric goodness-

of-fit test statistics. The proposed method has superior

TABLE III
OC ARL COMPARISON IN DETECTING VARIANCE SHIFTS WHEN

m0 = 100 AND λ = 0.05; NUMBERS IN PARENTHESES ARE SDRL
VALUES.

λ2 2SMGoF NLE ChangePt CvM

N0,1 0.25 33.4(25.1) 50.2(68.8) 17.2(8.9) 104.9(97)

0.5 154.9(176.7) 299.1(346.3) 57.6(60.2) 246.8(218.7)

0.75 225.6(196.2) 332(292.9) 157.1(166.1) 207.9(196.7)

1.25 140.91(144.9) 111.5(156.3) 184.8(185.1) 131.9(121.5)

1.5 99.1(113.5) 63.4(142.7) 143.1(155.5) 107.7(128.1)

2.0 49.5(59.7) 29.4(27.6) 57.2(64.5) 76.3(103.2)

4.0 15.4(9.6) 11.2(10.1) 11.9(8.6) 29.2(39.6)

t5 0.25 41.3(41.9) 71.2(109.6) 19.5(12.9) 153.6(127.9)

0.5 171.2(183.5) 265.6(280.2) 64.8(76.9) 274.6(215.7)

0.75 214.8(194.2) 267.1(245) 158.9(165.8) 240.5(201.7)

1.25 159.4(161.5) 136.6(153.6) 185.6(184.9) 158.5(157.5)

1.5 123.7(134.7) 92.4(115) 146.4(161.8) 134.4(146.8)

2.0 72.8(85.2) 47.1(57.4) 80.1(103.4) 95.8(106.7)

4.0 21.5(17.3) 15.9(10.5) 17.6(17.5) 42.7(46.4)

χ2
3 0.25 21.6(8.1) 35.8(12.1) 26.1(17.6) 46.9(31.7)

0.5 53.1(73.4) 66.6(89.3) 84.2(100.2) 185.9(168)

0.75 179.1(187.4) 325.9(339.6) 169.3(173.3) 244.3(204.3)

1.25 89.31(106.7) 67.7(45.9) 182.5(180.9) 130.7(133.7)

1.5 43.1(50.5) 22.7(18.8) 165.4(172.8) 95.7(107.5)

2.0 20.6(15.9) 9.1(3.5) 105.3(127.6) 48.4(58.3)

4.0 10.2(5.5) 7.4(4.1) 24.7(25.3) 20(21.1)

performance in detecting the changes in the mean and

variance in both increasing and decreasing directions,

regardless of the IC distributions. Furthermore, we also in-

tegrate self-starting feature into the chart by using dynamic

control limits. The self-starting method can ensure that

the proposed method has desired IC performance without

excessive false alarms even with small reference sample

size. We compare its performance with several nonpara-

metric charts discussed in the literature. The results show

that our method is very promising, especially in detecting

small mean shifts.

There are also some possible extensions to our current

method. For example, how to generalize our proposed

method to multivariate process control with efficient de-

tecting capability worth further study. It is also interesting

to study how the weighting function influences the per-

formance of the charts, and how to identify the optimal

weighting function.
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