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Abstract - The longitudinal survey is conducted to collect
responses from the target population repeatedly over long
periods of time, aiming to analyze and monitor the response
development as time goes on. However so far systematic
detection methodology for survey response changes is still in
its infancy. In this regard, this paper sheds light on this field
by applying statistical process control (SPC) methodology
into monitoring of longitudinal survey responses. Specifi-
cally, since generally the longitudinal survey responses are
categorical variables which have temporal dependence on
their previous values, i.e., autocorrelation, this research firstly
proposes a hierarchical model to describe these categorical
time series. The model can provide flexible autocorrelation
structures for the categorical time series and therefore
can be widely applied. Based on this model, this research
secondly designs a SPC scheme using likelihood ratio test
to monitor the survey responses. Estimation of the in-control
(IC) response distribution is also discussed. Numerical studies
demonstrate the satisfactory monitoring performance of the
proposed scheme. Finally as an empirical evaluation, the
scheme is applied to a real survey dataset to detect changes of
consumer attitudes towards the economic conditions during
a economic crisis.

Keywords - Statistical process control (SPC), longitudinal
survey data analysis, categorical time series, hierarchical
state space model, likelihood ratio test, particle filtering,
Monte Carlo expectation maximization (MCEM)

I. INTRODUCTION

Survey research has been widely used in social sci-

ences, marketing and politics as a standard tool to gather

information from the target population and to learn the

opinions of the population on certain interesting topics

[1]. For examples, customer satisfaction surveys help the

company to evaluate its performance and to orientate man-

agement and strategies. Political polls help the government

to know the residence opinions on a forthcoming policy

or law. One crucial aspect of the success of a survey

is statistical analysis of the collected data. So far plenty

of literature has been focusing on how to design and

analyze surveys to guarantee accurate statistical properties.

See [1] and the references therein for more background

knowledge. One trend is that, as data collecting technolo-

gies become easier and cheaper, now we can conduct

a series of surveys from the same population over long

periods of time, sometimes many years, which are called

longitudinal surveys (studies) [2]. They aim to measure the

development of the responses (characteristics) of the target

population. Current analyses of longitudinal surveys focus

on building models to describe the responses and fore-

casting their future values [4]. However, another equally

important yet unnoticed point is statistical monitoring of

these responses and efficient detection of their changes.

A fast detection will provide timely feedback to the

survey sponsor for policy adjustment. However, the only

pioneering work for monitoring longitudinal surveys is [5],

which presents a regression model to analyze the impact

of service changes on customer attitudes by comparing the

regression coefficients before and after the changes. To our

best knowledge, so far systematic statistical monitoring

schemes are still under-developed. One possible direction

is to apply statistical process control (SPC) methodology

to monitor longitudinal survey data. This is motivated

by that the survey data consist of samples sequentially

collected from the population, such as those taken as part

of a quality control process.

As we know, one most typical question type of a

survey is the tick-box question where respondents are

asked to select one (or potentially more) from a fixed

number of possible options. In statistics we call this kind of

responses as categorical data and assume them following

the multinomial distribution. So far many SPC schemes

have been proposed for categorical data with applications

in manufacturing. [6] presented a generalized p chart to

monitor multinomial processes based on Pearson χ2 statis-

tics. [7] designed a multinomial cumulative sum (CUSUM)

chart based on likelihood ratio test. [8] represented a k-

category process by a probability tree with k − 1 binary

stages and monitored them with k−1 independent p charts.

However one common limitation of the aforemen-

tioned charts is to treat the multinomial samples as in-

dependent ones. While for longitudinal survey data, the

responses usually have temporal correlations with the

previous values, i.e., autocorrelation. As a result, efficient

SPC schemes should take this point into consideration

as well. Unfortunately, to our best knowledge, current

SPC schemes for categorical time series can only handle

binomial or binary data series. [9] used the correlated

binomial model to monitor a product process with almost-

zero nonconformity probability. [10] proposed a stationary

Markov chain model to monitor binary series. [11] de-

veloped a binomial integer-valued autoregressive (INAR)

model and proposed several control schemes based on

the model. However their extensions to multinomial or

categorical cases are yet to be addressed.

To fill this research gap, here we propose an easy-to-

interpret SPC scheme for longitudinal categorical survey

data. It is also implementable for general categorical time

series with modest modifications. Our contributions are

threefold. Firstly we propose a hierarchical model to

describe the multinomial time series whose distribution

parameters are assumed to be driven by some latent vari-
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ables evolving according to a state space model. It is this

latent process that introduces temporal correlation of the

category data. Based on this model, we secondly propose a

control scheme for categorical time series using likelihood

ratio test. EWMA technique is also integrated into the

scheme to improve its detection power for small distri-

butional changes. Thirdly, with regard to implementable

issues, we put stress on model parameter estimation of

the in-control (IC) process. Monte Carlo expectation max-

imization (MCEM) algorithm together with particle filter-

ing & smoothing technique is used here, which provides

satisfactory estimation results. Numerical studies show

the chart can detect general distributional changes of the

categorical time series efficiently. An empirical evaluation

from a real longitudinal survey dataset, which records the

consumer attitudes towards the economic conditions in

the United States for consecutive years, demonstrates this

point as well.

II. METHODOLOGY

A. A Motivating Example

Our motivating application concerns a real survey

dataset which measures changes in American consumer

attitudes towards the economic conditions. This survey

was carried out since 1974 and monthly thereafter by

the Survey Research Centre of University of Michigan.

The respondent samples are selected from dwelling units

randomly by area and therefore representative of the adult

population of the United States. The responses come from

three alternatives: “better situation now”, “about the same

situation now”, or “worse situation now” compared with

that of the previous year. Therefore it is a 3-dimensional

multinomial process. Raw plots of the empirical propor-

tions of these 3 categories (e.g., Fig 3) reveal their similar

or opposite change patterns. These patterns can be justified

by the existence of factors, not precisely identified, that

relate to the economic conditions and affect different series

in similar or opposite ways. For example, the decrease

of deposit interest rates seems positive for some people

but negative for some others. Hence it increases the

number of responses in the categories of “better now” and

“worse now” in similar ways with different magnitudes,

and reduces the number of responses in the category of

“about the same”. This kind of considerations motivates

our choice of jointly modelling the categorical series in a

way that takes into account the existence of some latent

variables that evolve through time, as introduced in detail

in the following.

B. A State Space Model For Categorical Time Series

For k-categorical survey data collected sequentially at

time t = 1, · · · , T , suppose at t we collect nt responses,

every one of which comes from one of these k options.

We denote Yt = [Yt1, . . . , Ytk] as a k-dimensional vector

with Yti, i = 1, · · · , k as the number of responses in the

category i. Let pti define the probability that one response

falls into the category i at t, with the constraint
∑k

i=1 pti =

1. Then conditioning on pt = [pt1, · · · , ptk], Yt follows

a multinomial distribution, i.e.,

Yt|pt ∼ Multinom(nt,pt), for t = 1, · · · , T.
Now we introduce an elementwise transformation of pt

to a vector Xt whose elements are real values. This

transformation aims to define the distribution of pt in-

directly and to specify multivariate normal models for

Xt, since a multivariate normal distribution allows for

more flexible model structures. Here we consider the logit

transformation Xt = logit(pt), where Xti = log( pti

ptk
) for

i = 1, · · · , k − 1. Then we have

pti =

⎧⎨
⎩

exp(Xti)

1+
∑k−1

j=1 exp(Xtj)
for i = 1, · · · , k − 1

1

1+
∑k−1

j=1 exp(Xtj)
for i = k

. (1)

Other similar transformations such like the arcsine trans-

formation are also possible. Then we treat Xt =[
Xt1, · · · , Xt(k−1)

]
as a latent variable and introduce

process autocorrelation by assuming that Xt evolves ac-

cording to a state space model, i.e.,

Xt − μ = Φ · (Xt−1 − μ) + εt, (2)

where εt is the white noise following a (k−1)-dimensional

multivariate normal distribution N(0,Σ). So far we have

introduced all the model parameters Θ = {μ,Φ,Σ}.

As long as Φ satisfies

det(I− zΦ) �= 0, for all z ∈ C such that |z| ≤ 1,

we can guarantee that Xt together with pt is stationary.

Then pΘ(Xt) is a k − 1-dimensional multivariate normal

distribution with mean vector μ and covariance matrix Γ,

where Γ is the solution of Γ = ΦΓΦ′ + Σ according

to the Yule-Walker relationship. Marginalizing Xt, the

unconditional distribution of Yt can be expressed as

pΘ(Yt) =

∫
Rk−1

+

nt!

Ytk!
(
1 +

∑k−1
j=1 exp(Xtj)

)nt
(3)

k−1∏
i=1

exp(XtiYti)

Yti!
pΘ(Xt)dXt.

This hierarchical model allows for flexible patterns

of the autocorrelation between different categories. The

model ties the categorical series together but allows for

individual stochastic components through the term εt.
Higher order autocorrelation of Xt can also be accommo-

dated in the model, which is not the focus of this paper.

III. A MONITORING SCHEME

Based on the proposed state space model, we develop

a SPC scheme for categorical time series. We focus on

Phase II monitoring assuming that the in-control (IC)

parameters Θ0 = {μ0,Φ0,Σ0} are known exactly or esti-

mated accurately from the historical data. The estimation

procedure will be introduced in detail in Section IV. We

further assume that the target or the out-of-control (OC)

Proceedings of the 2015 IEEE IEEM

1398
Authorized licensed use limited to: Tsinghua University. Downloaded on February 27,2021 at 17:32:26 UTC from IEEE Xplore.  Restrictions apply. 



parameters Θ1 are unknown, and define a change-point

model as

Yt
i.i.d.∼

{
pΘ0(Yt) for t = 1, . . . , τ

pΘ1(Yt), for t = τ + 1, . . .
,

where τ is the unknown change point we want to detect.

Suppose that the chart has not triggered an OC

alarm before t, then we can estimate X̃t−1 from

pΘ0(Xt−1|Y1:t−1) as

X̃t−1 = EΘ0
[Xt−1|Y1:t−1] , (4)

and forecast X̂t via

X̂t − μ0 = Φ0 · (X̃t−1 − μ0).

In this way we can also forecast p̂t via the link function in

Equation (1). According to p̂t, we construct the likelihood

ratio-based goodness-of-fit test at time t as

Gt =
k∑

i=1

Yti ln
Yti

ntp̂ti
. (5)

To improve the detection power for small shifts, we

integrate the EWMA technique into Equation (5) and get

the final charting statistic as

Zt = (1− λ)Zt−1 + λGt, (6)

where λ is the EWMA tuning parameter with usual

settings as 0.05 ≤ λ ≤ 0.2. We set the initial value Z0 = 0.

We define the chart triggers an OC alarm if Zt > h. h is

the critical value determined based on the pre-specific IC

average run length (ARL0).

One concern about the chart is, since the posterior dis-

tribution pΘ0
(Xt|Y1:t) has no close form for arbitrary Θ0,

at first glance the inference of Equation (4) is intractable.

However, we can tackle it perfectly by numerical inte-

gration method. Considering the sequential nature of the

state space model, here we use particle filter algorithm (PF,

also called Sequential Monte Carlo) [12]. PF approximates

pΘ0
(Xt|Y1:t) in a sequential way with the concept of

importance sampling. It assumes the density pΘ0(Xt|Y1:t)
can be approximated by Np samples {xi

t, i = 1, · · · , Np}
and their associated weights {W i

t , i = 1, · · · , Np}. Then

the weighted approximation to the posterior density is

given by

pΘ0
(Xt|Y1:t) ≈

Np∑
i=1

W i
t δ(Xt − xi

t), (7)

where δ is the Dirac delta function. The normalized

weights W i
t ’s satisfy

∑Np

i=1 W
i
t = 1. Then the distribution

of Xt+1 can be predicted by Equation (7). Specifically,

each particle xi
t+1 for i = 1, · · · , Np can be generated by

propagating the state function in Equation (2) with a ran-

dom noise εit+1 drawn from the white noise distribution,

and then used for prediction as

pΘ0(Xt+1|Y1:t) ≈
Np∑
i=1

W i
t δ(Xt+1 − xi

t+1).

Then the next observation Yt+1 is used to update the

weight for every particle by its corresponding likelihood

according to the Bayes rule, i.e.,

W i
t+1 ∝ W i

t · p(Yt+1|xi
t+1).

Therefore we have

pΘ0(Xt+1|Y1:t+1) ≈
Np∑
i=1

W i
t+1δ(Xt+1 − xi

t+1).

Fig. 1 presents the estimation performance of PF with

Np = 500 for a 3-dimensional categorical time series as

an example. The close overlap of the true and estimated

values demonstrates the efficiency of the algorithm.

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

t

X t
1

true
PF

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

t

X t
2

true
PF

Fig. 1: The estimate X̃t = EΘ0 [Xt|Y1:t] based on PF for
a 3-dimensional categorical time series with parameter nt =
400,Φ = [0.4, 0.1;−0.2, 0.5], μ = [−0.3, 0.3], Σ = 0.36I,
and Np = 500.

IV. PARAMETER ESTIMATION

Usually the IC parameters Θ0 need to be estimated

from the historical IC data, noted as {Y1:T } where T is

the IC sample size. As such, now we discuss the general

estimation procedure of Θ for the proposed state space

model. The challenge is since its latent variable structure

makes the marginal unconditional distribution pΘ(Yt) in

Equation (3) have no close form, direct model estimation

based on maximum likelihood is impossible here. One

natural and efficient solution to deal with these latent

variables is expectation maximization (EM) algorithm. EM

algorithm is an iterative procedure to seek for Θk+1 at

the (k + 1)th step such that the likelihood of {Y1:T }
is increased from that at the kth step. Its key idea is

to postulate the “missing” data set {X1:T } and consider

maximizing the joint log-likelihood of the complete data

{X1:T ,Y1:T }. Thanks to the Markovian structure of the

state space model, the complete data log-likelihood has

the separable form as

log pΘ(X1:T ,Y1:T ) = log p0(X1) +
T−1∑
t=1

log pΘ(Xt+1|Xt)

+
T∑

t=1

log p(Yt|Xt).

where p0(X1) is the prior distribution of X1. Since

{X1:T } are unavailable, EM approximates the complete

log-likelihood by Q(Θ,Θk), which is the conditional

expectation of log pΘ(X1:T ,Y1:T ) given the observations
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{Y1:T } with the current parameters Θk, i.e.,

E step: Q(Θ,Θk) =∫
pΘk (X1:T |Y1:T ) · log pΘ(X1:T ,Y1:T )dX1:T .

(8)

Then we want to find the revised parameter estimate Θk+1

that maximizes the function

M step: Θk+1 = argmax
Θ

Q(Θ,Θk).

Unfortunately, since in our model pΘk(X1:T |Y1:T )
also has no close form, direct EM estimation is intractable.

Here we propose to use Monte Carlo EM (MCEM) with

particle filtering & smoothing algorithm to approximate

Equation (8). Specifically, recalling the filtering distribu-

tion in Equation (7), we can also get a direct approx-

imation to the smoothed distribution pΘk(Xt|Y1:T ) for

t = 1, · · · , T − 1 with the same particles yet different

weights as filtering by considering the information of

the future observations {Yt+1:T } into the current state

estimation [12]. Based on the smoothed distribution, we

can further get an approximation of Equation (8) as

Q̂(Θ,Θk) ≈
T−1∑
t=1

Np∑
i=1

Np∑
j=1

W ij
t,t+1|T log pΘ(x

j
t+1|xi

t), (9)

where the pairwise particle weight is given by

W ij
t,t+1|T = W i

t

W j
t+1|T pΘk(xj

t+1|xi
t)∑Np

l=1 W
l
tpΘk(xj

t+1|xl
t)
, (10)

and W i
t|T = W i

t

Np∑
j=1

W j
t+1|T pΘk(xj

t+1|xi
t)∑Np

l=1 W
l
tpΘk(xj

t+1|xl
t)
.

Then in the M step, with the gradient available for Equa-

tion (9), we get Θk+1 = {μk+1,Φk+1,Σk+1} as

Πk+1 = [(I−Φk+1)μk+1,Φk+1]
′

= (

T−1∑

t=1

Np∑

i=1

Np∑

j=1

W ij
t,t+1|Txj

t+1z
i′
t )(

T−1∑

t=1

Np∑

i=1

Np∑

j=1

W ij
t,t+1|T zitz

i′
t )−1

and

Σk+1 =
1

T − 1

T−1∑

t=1

Np∑

i=1

Np∑

j=1

W ij
t,t+1|T (xj

t+1 −Πk+1zit)(x
j
t+1 −Πk+1zit)

′

with zit =
[
1,xi

t

]
.

The particle filter & smoothing-based EM algorithm

inherits the good convergence property of the conventional

EM algorithm when Np is large enough. The following

simulation results illustrate this point by setting Np = 200
to estimate a 3-dimensional categorical time series with

nt = 400 and T = 500. The process parameters are

set to be Φ = [0.4, 0.1;−0.2, 0.5], μ = [−0.3, 0.3] and

Σ = 0.36I, from which 200 different replications of

{X1:T ,Y1:T } are simulated. For every replication, we

assume its {X1:T } and Θ are yet unknown and to be

estimated by the MCEM algorithm. The MCEM algorithm

randomly picks an initial value Θ0 and iterates the E step

and M step until the terminating condition Q̂(Θk+1,Θk)−

Q̂(Θk,Θk) ≤ ε is satisfied for an extremely small ε ≥ 0.

Then we totally have 200 estimates of Θ and use them to

analyze the bias and the rooted mean square error (RMSE)

of the estimation method. As Table I lists, the bias and

RMSE are acceptably small, illustrating the satisfactory

estimation accuracy and stability of MCEM.

TABLE I: Parameter estimation by MCEM Algorithm based on
200 replications.

Para. True Bias(RMSE) Para. True Bias(RMSE)

φ1 0.4 -0.012 (0.044) μ2 0.3 -0.001 (0.056)
φ2 0.1 -0.002 (0.044) σ11 0.36 0.006 (0.025)
φ3 -0.2 -0.006 (0.040) σ12 0 0.002 (0.017)
φ4 0.5 -0.010 (0.036) σ22 0.36 0.006 (0.025)
μ1 -0.3 -0.003 (0.044)

V. NUMERICAL STUDIES

Here we use some numerical studies to present the

charting performance of Equation (6). As we know, any

shift in one of the three parameters, μ,Φ and Σ, may

change the distribution of Yt and trigger OC signals.

Hence we discuss these three types of parameter changes

respectively and study the chart performance in terms of

average run length (ARL). Due to the limited space of

this paper, we illustrates only one IC scenario here for

a 3-dimensional process with μ0 = [−0.3, 0.3] ,Φ0 =
[0.4, 0.1;−0.2, 0.4] ,Σ0 = 0.01I as an example. Some

other simulation studies not shown here have been done

as well and illustrated that the chart is quite robust for

processes with different dimensions or IC parameters.

The OC scenarios considered here are as follows: i)

shift in μ with size Δμ for either dimension, i.e., μ1,i =
μ0,i + Δμ for i = 1, 2; ii) shift in Φ with size Δφ, i.e.,

Φ1,ii = Φ0,ii + Δφ for i = 1, 2; iii) shift in Σ with

magnitude of ζ, i.e., Σ1 = ζΣ0. We consider the target

ARL0 = 200 and calculate the responding control limit

h = 3.0906 via simulation. We set the EWMA parameter

λ = 0.1.

Fig. 2 shows that the chart has satisfactory OC per-

formance against the change in magnitudes for different

structure parameters. Particularly, it has a slight better

detection power for changes in the second dimension. This

might be caused by two factors. On one hand, due to the

asymmetry of μ0, a bigger μ0,2 in the second dimension

means a higher proportion and more observations than the

first dimension, and thereby magnifies the influence of the

changes. On the other, due to the asymmetry of Φ0, the

same Δφ in Φ0,22 causes a bigger change of Γ for pΘ(Xt),
and correspondingly a bigger distributional change for pt.

VI. A REAL APPLICATION IN SURVEY OF CONSUMER

ATTITUDES TOWARDS ECONOMIC CONDITIONS

Now we continue the real survey data analysis as

introduced in Section II-A. Actually, we find the survey

responses change periodically due to the influence of

economic crises. In this sense, we can use the response

data between two consecutive economic crises as IC
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Fig. 2: OC performance for different change patterns: (a) μ shift; (b) Φ shfit; (c) Σ shift.

samples for model estimation, and then implement the

control chart to detect the OC response changes during the

second economic crisis. Here we use the data from 2003
July, when the economic conditions were just recovered

from the crisis in 2000, to 2007 August with series length

T = 50 as IC samples to construct the chart, and then

use the chart to detect the response changes in the coming

crisis in 2008.

The model parameter estimates based on the IC sam-

ples are given by

Φ0 =

(
0.85 −0.16
0.23 0.27

)
,μ0 =

(−0.14
−1.38

)
,Σ0 =

(
0.051 0.014
0.014 0.051

)
.

Based on them, the correspondingly tracked X̂t and p̂t

by particle filtering are shown in Fig. 3. We can see that

for the IC samples, p̂t match the empirical proportions

well, illustrating that the fitted model can provide a good

description of the survey data. Further model diagnoses

which are not shown here also demonstrate this point.

However after 2007 August, the fitted model loses its

tracking accuracy, meaning that the process undergoes

certain parameter changes. We apply the proposed SPC
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Fig. 3: The estimated pt from samples (blue circle) and the state
space model (red cross).

scheme to detect the changes. The control limit h =
7.7596 is calculated via simulation with the pre-specific

IC ARL0 = 200 and λ = 0.1. Fig. 4 plots the monitoring

statistic Zt through time. Noted that though we focus on

Phase II monitoring, i.e., only monitoring samples after

t = T , we still draw Zt for t = 2, · · · , T for mere

illustration. We can see that {Z2:T } are relatively small

and stably below the control limit. After T , Zt increases

monotonously and reaches h at t = 55 (2008 January),

triggering the OC alarm.

04/2004 02/2005 12/2005 10/2006 08/2007 06/2008
0

5

10
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Z t

h=7.7596

Fig. 4: The monitoring statistic Zt for longitudinal categorical
survey data, with the control limit h = 7.7596.

VII. CONCLUSION

This paper first proposes a state space model to

describe the categorical time series with flexibility of

the autocorrelation structure between different categories.

Then based on the proposed model, it designs a SPC

scheme for Phase II monitoring by likelihood ratio test.

Numerical studies report the satisfactory detection power

of the proposed chart. An empirical evaluation from a real

survey dataset also demonstrates this point.
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