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Abstract— Tube internal erosion, which corresponds to its
wall thinning process, is one of the major safety concerns
for tubes. Many sensing technologies have been developed to
detect a tube wall thinning process. Among them, fiber Bragg
grating (FBG) sensors are the most popular ones due to their
precise measurement properties. Most of the current works focus
on how to design different types of FBG sensors according to
certain physical laws and only test their sensors in controlled
laboratory conditions. However, in practice, an industrial system
usually suffers from harsh and dynamic environmental con-
ditions, and FBG signals are affected by many unpredictable
factors. Consequently, the FBG signals have more fluctuations
and are polluted by noises. Hence, the signals no longer directly
follow the assumed physical laws and their proposed thinning
detection mechanisms no longer work. Targeting at this, this
article develops a data-driven model for FBG signal feature
extraction and tube wall thickness monitoring using data analytic
techniques. In particular, we develop a spatiotemporal model
to describe dynamic FBG signals and extract features related
to thickness. By taking physical law as guideline, we trace the
relationship between the extracted features and the tube wall
thickness, based on which we construct an online statistical
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monitoring scheme for tube wall thinning process. We use both
laboratory test and field trial experiment to demonstrate the
efficacy and efficiency of the proposed scheme.

Note to Practitioners—This article is motivated by the real
industrial needs of inner erosion detection of tubes in harsh
environment. Most of the current research works focus on
designing various sensing apparatuses based on fiber Bragg
grating (FBG) sensors for nondestructive erosion detection. These
apparatuses prove to be able to collect signals reflecting tube
wall thickness in static and controllable laboratory environment
qualitatively. However, in reality, the industrial environment,
which is impacted by many changing factors, is dynamic and
uncontrollable. Consequently, the signals collected by these FBG
apparatuses would have larger variations that mask the signals
related to thickness. Furthermore, current methods have neither
mentioned how to process their collected data to capture the
unnoticeably slow but accumulative erosion information effi-
ciently nor constructed online monitoring algorithms to detect
the tube wall thinning process based on the collected signals
quantitatively. Built upon their apparatuses but targeting at their
unsolved challenges, we propose a novel data-driven approach for
FBG signal analysis that can remove the environmental influence
and extract features only related to tube wall thickness, and using
the extracted features, we construct a statistical process control
scheme to monitor tube wall thickness and detect erosion in real
time efficiently.

Index Terms— Fiber Bragg grating (FBG) sensors, online
monitoring, spatiotemporal model, statistical process control,
tube erosion detection.

I. INTRODUCTION

TUBE (or pipe or pipeline) is an important structure for
liquid transportation in many manufacturing systems or

civil systems. However, due to the effect of inner fluids and
harsh environmental conditions, the tube is particularly prone
to be corroded. Once a tube is subjected to continuous erosion,
its wall would become thinner and thinner and may probably
cause leakage or rupture. Thus, it is of great significance
to monitor the erosion level, i.e., thinning process of tube
wall, to ensure its safe operation. In general, the thinning
processes can be classified as corrosion of external walls
and erosion of internal walls. External corrosion refers to the
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Fig. 1. Erosion of U-bend tubes in an HRSG boiler. (a) U-bend tube facilities.
(b) Internal erosion.

deterioration processes occurring on metal surfaces of tubes
that are exposed to outdoor environments and is largely driven
by atmospheric and climatic conditions. External corrosion
can be easily prevented by protecting the external surface of
tube with insulation and cathodic materials. Internal erosion,
as shown in Fig. 1(b), occurs on the surfaces inside the tubes
due to the joint action of fluid flushing, corrosive medium, and
microorganism and is more difficult to be prevented in general.
As such, monitoring internal erosion, focusing on detecting the
initiation of erosion and assessing the tube safety performance,
has become one of the best options to offer early warning
and to avoid high cost of later repairing and has become an
important research topic [1].

There are many nondestructive methods to detect tube
internal erosion. Some representative and mature techniques
include electrochemical impedance spectroscopy [2], linear
polarization resistance [3], [4], and electronic resistance tech-
nique [5]. However, for oil and gas tube monitoring, the use
of these electrical sensors above will cause potential dangers
to tube safety operation [6]. Moreover, when the erosion
location is far away from the monitoring apparatus, the signals
of electronic sensors would be really vulnerable to harsh
environment and external electromagnetic disruptions. The
optical fiber sensor is a promising technology, due to its
advantages of geometric versatility and high measurement
accuracy and reliability that are particularly attractive in harsh
environment [7]–[9] with high temperatures and pressures, and
strong electromagnetic fields. Considering their superior abil-
ities, optical fiber sensing technologies have received increas-
ing attention in the study of erosion monitoring in recent
years [10]–[16].

One of the most direct phenomena caused by erosion
(wall thinning process) is the change of tube circumferential
strain. This is because the thinning process will cause the
circumferential hoop strain to increase gradually according to
the hoop strain theory, i.e.,

ε = �P R

Eμ
(1)

where ε is the circumferential strain of the tube; �P is the
applied pressure; E is Young’s modulus, R is the tube radius,
and μ is the wall thickness of the tube. It is assumed that
E and R are the constants. Therefore, the circumferential

strain is inversely proportional to the wall thickness.
Consequently, its change can be reflected by the circumfer-
ential strain directly. As such, monitoring the hoop strain
variation of tube is a desirable way to detect the change of
tube wall thickness [16]. Among different types of optical
fiber sensors, fiber Bragg grating (FBG) sensors can accurately
measure the circumferential strain of a tube with millimeter-
scale resolution and microstrain measurement precision and
hence can provide an effective method for tube erosion mon-
itoring [15]. In particular, the FBG wavelength shift �λ is
related to the circumferential strain in the following way:

�λ

λ0
= (1 − Pe)ε + [(1 − Pe)α + ξ ]�T (2)

where λ0 is the initial wavelength when the FBG sensor is
standalone at room temperature T0, Pe stands for the photoe-
lastic constant of fiber, α stands for the thermal expansion
coefficient of fiber, ξ stands for the thermal-optics coefficient,
and �T is the temperature change from T0. Then, with the
knowledge of �T and �λ, we can infer ε and consequently
monitor μ according to (1).

There exist some works for tube corrosion or erosion
detection using FBG sensors based on the above physical law.
In particular, Gao et al. [17] developed an FBG corrosion
sensor to monitor the corrosion rate in reinforced concrete
structures. Hu et al. [18] developed a Fe-C-coated FBG sensor
for steel corrosion monitoring by measuring strains in the
radius direction when wrapped on the steel bar. Ren et al. [19]
designed an FBG hoop-strain sensor that could be used to
measure tube uniform corrosion levels. Deng et al. [20] further
discussed applying FBG sensors into corrosion detection of
tubes with soft coatings.

All of these works focus on how to design FBG sensors and
the measurement system, and they only test their designed
apparatuses in laboratory environments by controlling all
environmental variables to be consistent. However, in real
applications, besides tube wall thickness, other environmental
factors, such as tube temperature and pressure, i.e., �P and
�T , would fluctuate and also affect FBG signals. Then, if we
omit the variation of �P and �T and treat them as constant
when inferring μ via (2), these variations would be transferred
to the variation of the estimated μ and hence deteriorate the
online monitoring accuracy.

For example, Fig. 2 shows the signals of 13 FBG sensors
with 1-kHz sampling rate mount at 13 tubes of a heat recovery
stream generator (HRSG) boiler as shown in Fig. 1(a) over
a time period (19 days). The wavelength shift of each FBG
sensor changes with respect to λ0

i . Since different tubes have
various wall thicknesses as presented in Table V (due to
confidential reason, we hide the measurement unit here and
mask the thickness magnitude by setting it as a reference
thickness of μ0 plus a deviation). Note that μ0 is a fixed
constant throughout this article), according to (2), their Bragg
wavelength change is expected to have different shift magni-
tudes, i.e., FBG sensors on thinner wall tubes are presumed
to have larger shifts in general. However, by plotting the FBG
signals of tubes with smallest to largest wall thicknesses via
lines from yellow to red in Fig. 2, we cannot observe this
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Fig. 2. Wavelength shifts of 13 FBG sensors on the HRSG boiler from their
initial values over time. Each line represents one FBG sensor’s signals over
time. The color from red to yellow represents FBG sensors with the thinnest
wall thickness to the thickest wall thickness.

Fig. 3. Mean of wavelength shifts calculated from Fig. 2 from day 13 to
day 15 (time window) versus their wall thicknesses (due to confidential reason,
we hide the measurement unit here and mask the thickness magnitude by
setting it as a reference thickness of μ0 plus a deviation).

monotone property at all. Clearly, all the signals have large
longitudinal dynamics and evolve in a similar pattern. This
is caused by the change of environmental factors, such as
temperature and pressure over time, driven by the manufac-
turing dynamics in practice. Furthermore, even if the global
environmental factors are kept stable in some short time
windows (such as the window from day 13 to day 15 in
Fig. 2), each FBG sensor still has its own variation features
due to local environmental fluctuations. If we calculate the
average wavelength shift �λ̄i of each sensor in this flat time
window and plot them in Fig. 3, the monotone relationship
between �λ̄i and μi is still unobservable. This is because
even at the same time point, the temperatures and pressures of
different tubes are still different from each other, due to local
environmental variations. Consequently, shifts of FBG signals
caused by various wall thicknesses (or thinning process) would
be hidden by these shifts caused by either global or local
dynamic environmental changes.

In a real application environment, the behaviors of FBG
sensors are much more random than expected. Some works
propose to mount additional sensors to track the local temper-
atures and pressures as well and plug their real-time values
in (2). However, it is hard to guarantee that their measured
temperatures and pressures are exactly equal to the ones where

the FBG sensors are located. Even if we can measure �P and
�T accurately, direct plugging them into (2) for inference
is still inaccurate since the other physical constants in (2),
such as E , R, and Pe, may also change with �T , while their
change magnitudes are hard to be quantitatively described.
To remove the influence of all these factors, some other
works suggest mounting unstained FBG sensors around each
target FBG sensor on the tube as references. By subtracting
these reference sensors’ signals from the target sensors, it is
expected that signals related to environmental changes can
be compensated and signals only related to thickness can be
exposed. However, this compensation method is not always
applicable. In reality, reference sensors sometimes cannot be
mounted due to environmental or financial constraints. Even if
they can be mounted, they have limited functions in practice
since the environmental conditions of these unstained FBG
sensors may still be different from conditions of the target FBG
sensors on the tubes. Consequently, this compensation loses its
meaning. Furthermore, all the existing methods mentioned ear-
lier only prove that the FBG signals collected from designed
apparatuses can reflect the tube wall thickness qualitatively in
the offline erosion detection test, while they still have a far
way to go for constructing a quantitative algorithm for online
tube wall thickness change detection.

Considering the limitations of these hardware-based signal
correction methods, another promising direction is to use
data analytic techniques to extract FBG signals’ features
only related to wall thickness. Targeting at this, this article
develops a novel data-driven approach for FBG sensor-based
tube wall thinning process monitoring. Our approach is built
upon physical law but adjusted with statistical models. In par-
ticular, we develop a spatiotemporal model to remove the
environmental influence and extract features of FBG signals
that relate to tube wall thickness. Specifically, for each FBG
sensor, we treat its signals as response (dependent variable)
and use the other sensors’ signals as predictors (independent
variables) for representation, with the basic idea that the
representable part indicates features that coexist among all
the sensors, and correspond to global environmental changes.
Then, the left residual signals can be regarded as features
that specially belong to the response sensor and correspond
to features caused by its own properties, such as its wall
thickness (wall thinning process) and local system vibrations.
Consequentially, we can use the representation residuals for
feature extraction. By taking the physical law as guideline,
we describe the relationship between the extracted residual
feature and the tube wall thickness. Finally, based on the
relationship, we construct an online monitoring scheme for
tube wall thinning process. The scheme monitors the residual
feature in real time and triggers an alarm once it goes out
of the prespecified control limit, which indicates that the tube
wall thickness decreases to the minimum tolerable value and
should be replaced.

The remainder of this article is organized as follows.
Section II introduces our problem formulation to describe
the FBG signals on tubes in dynamic noisy environments.
Section III reviews related research works that have the
potential to infer the formulated problem and their limitations.
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Section IV introduces our proposed spatiotemporal model
for feature extraction in detail. Section V constructs the
relationship between the extracted feature and the tube wall
thickness and, built upon them, develops the online monitoring
scheme. Section VI conducts some numerical studies using
synthetic data to validate the proposed methods. Section VII
applies the proposed methodology into tube wall thinning
process detection with both lab test and real field trials. Finally,
Section VIII concludes this article with remarks.

II. PROBLEM FORMULATION

Suppose that we have p FBG sensors mounted at p different
tubes. For each sensor i , we assume that its initial wavelength
λ0

i is known and collect its signals λi (t) in real time. We define
the relative wavelength shift of sensor i at sensing time
point t as

Xi(t) = λi (t) − λ0
i

λ0
i

which will change due to system dynamics in real time.
In particular, we denote the real-time global temperature
and pressure as �P(t) and �T (t), respectively. Furthermore,
to address local environmental fluctuations of different tubes,
for each sensor, we further add disturbance items P̃i(t) and
T̃i(t) on �P(t) and �T (t). Consequently, the physical law
that each sensor follows can be formulated as

Xi (t) = (1 − Pe)
(�P(t) + P̃i (t))R

Eμi

+ [(1 − Pe)α + ξ ](�T (t) + T̃i(t)) (3)

where μi denotes the tube wall thickness of sensor i ’s location.
It is to be noted that in (3), we only consider t of a short
time window, i.e., W0 = [0, L], t ∈ W0, with the assumption
that μi will not change in W0. Furthermore, we assume
that the temperature disturbance T̃i(t) follows a homogeneous
distribution over time with mean as 0 and variance as σ 2

T for
all the sensors. Similarly, the pressure disturbance �P̃i follows
another homogeneous distribution over time with mean 0 and
variance σ 2

P .
Though (3) provides a promising model to describe the

FBG wavelength shifts in a real dynamic system, in practice,
it is very challenging to infer the system based on (3), due
to the unavailability of �T (t), �P(t), T̃i(t), and P̃i (t) as
mentioned in Section I. Furthermore, for these FBG sen-
sors, their physical constants, i.e., Pe, α, and ξ , will differ
from their theoretical values on the manual book due to
the influence of apparatus settings, such as the tube mate-
rials and sensor mounting techniques. Consequently, Pe, ξ ,
and α cannot be precisely inferred as well. All of these
require us to estimate Pe, ξ , and α together with �T (t),
�P(t), T̃i (t), and P̃i (t) from the system. However, these
variables have intersections with each other, making it almost
impossible to use traditional statistical parametric models for
inference. Consequently, we have to bypass direct estimation
of (3). Instead, we hope to extract intermediary features that
relate to μi from (3) and use these features to estimate and
monitor μi .

In particular, by reformulating (3), it can be separated into
two parts, i.e., Xi (t) = X0

i (t) + X̃ i (t) where

X0
i (t) = (1 − Pe)

�P(t)R

Eμi
+ [(1 − Pe)α + ξ ]�T (t) (4)

X̃ i(t) = (1 − Pe)
P̃i (t)R

Eμi
+ [(1 − Pe)α + ξ ]T̃i(t) (5)

where X0
i (t) is the FBG wavelength shift caused by global

environmental dynamics. Its pattern is influenced by two
sources, i.e., system temperature and pressure, and can be
regarded as signals. X̃ i (t) is the FBG wavelength shift caused
by local dynamics and can be regarded as noise. According
to our assumptions, it has E(X̃ i (t)) = 0 and Var(X̃ i (t)) =
θ1/μ

2
i + θ2, where θ1 = (1 − Pe)

2 R2σ 2
P/E2 and θ2 = [(1 −

Pe)α + ξ ]2σ 2
T are constants.

III. LITERATURE REVIEW

In this section, we review some research works that have
potential to infer the system of (4) and (5).

As observed, both X0
i (t) and X̃ i (t) include μi as parameters

and can be potentially used for inference of μi . If we would
like to focus on the signal part, we need to separate the
influence of the two sources, i.e., �P(t) and �T (t), since
μi only affects the magnitude of �P(t). This is related to the
problem of blind source separation (BSS) [21]. BSS targets
at separating the influence of different unknown blind sources
only by using mixed signals of these sources. However, one
crucial obstacle to applying BSS in our case is its well-known
indeterminacy problem [22] that any permutation or scaling
matrix will lead to equivalent separation but different source
signals and coefficients. This indeterminacy will not bring any
problem if we only do BSS for FBG signals once, for a single
time window. However, for online monitoring, we have to
do BSS for different time windows sequentially. If the BSS
results of different windows have different latent permutations
or scaling, it would be impossible to compare the coefficients
of different windows, which are functions of μi , with the
same rule. Consequently, we cannot set a decision criterion
for thickness changes.

As an alternative, analyzing the noise part will simplify
the problem. Recall that Var(X̃ i (t)) = θ1/μ

2
i + θ2. This

indicates that as long as we can estimate the noise part or
simply just its variance, correctly, we can infer the information
of μi based on this linear relationship between Var(X̃ i(t))
and 1/μi . Signal–noise separation is a classical problem [23]
in many applications, such as speech signal enhancement
and recognition and EEG signal separation, and has been
a major challenge for many researchers and engineers for
more than four decades [24], [25]. Many approaches have
been investigated, including power spectral subtraction [26],
Wiener filtering [27], soft-decision estimation [28], and sub-
space methods [29]. Most of these pioneer works assume that
only single-channel signal (i.e., only one FBG sensor in our
case) is available and use a temporal prediction-related method
for noise separation. Though for multichannel cases, these
methods can still be used by denoising each channel separately,
they miss the correlation information of different channels
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and consequently may sacrifice the denoising performance.
To use their correlation information for better noise removal,
Huang et al. [30] and Sameni et al. [31] proposed spatiotempo-
ral prediction approaches based on Wiener filtering to denoise
multichannel signals together. Borowicz [32] also proposed a
spatiotemporal prediction approach based on subspace meth-
ods. However, all these methods require knowing the variances
of signals and noises, and their correlations in advance when
conducting signal projections, while in our case, this informa-
tion is unavailable. Another direction for separating the noise
part from the signals is related to stationary subspace analysis
(SSA) [33], [34]. SSA methods aim at extracting the stationary
part of the original signals, by projecting the original data to
a lower dimensional subspace such that the distribution of the
projected data does not change over successive time windows.
SSA may be applicable in our case since no matter how X0

i (t)
changes dynamically, and X̃ i (t) keeps random but stationary
over time. However, the assumption that X0

i (t) should be
always nonstationary over time might be too strong in many
applications. Considering the fact that X0

i (t) might still be
stationary in some time periods as well, but just have different
patterns from X̃ i(t), methods for SSA are still not reliable for
solving our problem.

IV. FEATURE TRANSFER ALGORITHM FOR

FBG SIGNAL MODELING

With the limitations of the current signal–noise separation
algorithms in mind, here, we present a novel signal–noise
separation algorithm to identify X0

i (t) and X̃ i(t). Our idea is
to assume that X0

i (t) and X̃ i(t) come from different subspaces.
By using the spatiotemporal correlations of X0

i (t) of different
sensors, a subspace learning algorithm for signal–noise sepa-
ration can be learned, which is introduced as follows.

The core of our model is that the environmental change
will cause all the FBG sensors to change similarly, i.e., the
FBG wavelength shifts caused by environmental changes
will coexist among all the sensors. Then, our key idea is,
as X0

i (t), i = 1, . . . , p, are linear functions of �T (t) and
�P(t), by solving the linear equation system, and we can
reversely reformulate �T (t) and �P(t) as linear functions
of X0

i (t), i.e.,

�P(t) =
p∑

j=1

a j X0
j (t), �T (t) =

p∑
j=1

c j X0
j (t) (6)

where a j and c j are the linear coefficients. It is to be noted
that strictly speaking, two channels of X0

i (t) would be enough
to express �P(t) and �T (t) in (6). Yet, we incorporate all
the channels for general expression. We temporarily put them
aside for notation purpose. Then, by plugging (6) into (4),
we can get the following self-expressive property:

X0
i (t) =

∑
j �=i

bi j X0
j (t) (7)

where ∀i = 1, . . . , p. Here, bi j are coefficients, which are
linear functions of a j and c j , and other physical constants.
Then, we have

Xi (t) =
∑
j �=i

bi j(X j (t) − X̃ j(t)) + X̃ i (t). (8)

It is to be noted that (8) is similar to a regular linear
regression, where bi j represents regression coefficients of the
predictors and X̃ i(t) are the residuals. The only difference is
that the predictors are not directly observable but are prediction
outputs of other regressions. This motivates us an iterative
inference algorithm to solve bi j and X̃ i (t). Specifically, for
each iteration, the following conditions hold.

Step 1: For each i , we treat it as the response vari-
able and construct the linear regression Xi (t) =∑

j �=i bi j X0
j (t) + Zi (t) with X0

j (t) estimated from
the last iteration.

Step 2: For each i , we update X0
i (t) = Xi(t)− Zi (t) where

Zi(t) is its regression residual from Step 1.

Now, we talk about how to estimate the regression coeffi-
cients in Step 1. Though it can be formulated as a stan-
dard linear regression and its estimation can be achieved
by minimizing the sum of square of the residuals, yet in
the following, we design a more complex inference model
by carefully considering more factors. On the one hand,
recall that the linear system �P(t) = ∑p

j=1 a j X0
j (t) and

�T (t) = ∑p
j=1 c j X0

j (t) may have infinite solutions for a j

and c j . Consequently, the corresponding bi j, j = 1, . . . , p
are not unique and the regression may be underdetermined.
In order to give preference to a particular solution with
desirable property, a regularization term can be enforced on
the norm of bi = [bi1, . . . , bip]. On the other hand, in large-
scale systems, even �P(t) and �T may be different, due
to spatial variations and fluid mechanics in different parts of
the system. In other words, there are different subsystems
with various environmental conditions. For example, fluid
in tubes far away from each other may have different flow
speeds, temperatures, and pressures according to requirements
of the fluid system. Suppose that we have M subsystems, each
of them has its own {�Pm(t),�Tm(t)}m=1,...,M . This means
that X0

i (t) of different FBG sensors would also come from
different M signal subspaces (subsystems) Sm, m = 1, . . . , M .
X0

i (t) of sensors from the same subspace Sm shares the same
{�Tm(t),�Pm(t)}, whereas X0

i (t) of sensors from different
subspaces, Sm1 and Sm2 , have different {�Tm1(t),�Pm1 (t)}
and {�Tm2(t),�Pm2 (t)}. This indicates that for a particular
subspace m, not all the p sensors should necessarily have
nonzero a j and c j . Instead, only sensors from this sub-
space has contributions, i.e., �Pm(t) = ∑

j∈Sm
a j X0

j (t) and
�Tm(t) = ∑

j∈Sm
c j X0

j (t); hence, for Xi (t) ∈ Sm , its bi is
naturally a sparse vector. Though in practice, we do not know
the subspace structure in advance, this sparsity property of bi

suggests adding a regularization term on the norm of bi to
force sensors from other subspaces Sk, k �= m to have zero
coefficients. Considering these two points, we propose to add
l1 penalty on the norm of bi . Then, the regression in Step 1
can be estimated via the following optimization function:

min
bi

L∑
t=1

Zi(t)
2 + λ1‖bi‖1

s.t. Zi(t) = Xi (t) −
p∑

j=1

bi j X0
j (t), bii = 0. (9)
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This is similar to the idea of sparse subspace learning
(SSL) [35], [36], where they assume that Xi (t), i = 1, . . . , p
come from different subspaces that are composed of different
basis functions. Each Xi(t), i = 1, . . . , p is a linear combina-
tion of the basis functions of its own subspace. Therefore, sen-
sors from the same subspace can be mutually self-represented.
However, in practice, the subspace structure is unknown. Thus,
a sparse regression can be achieved via adding the l1 penalty
on the self-expressive coefficients. According to SSL, it can
guarantee that with high probability, the estimated bi would
only have nonzero values on components of variables from the
same subspace as the output variable [35], [36]. Consequently,
benefited from the similar formulation of (9) to SSL, we can
also deal with signal–noise separation when multiple subsys-
tems exist. However, note that it is not compulsory to apply (9)
into cases with more than one subspace in the system since (9)
is only used for estimation of X0

i (t). This is our largest
difference from SSL, whose objective is to cluster different
channels into different subspaces by treating bi j as the affinity
criterion between two channels. Furthermore, in (9), we do not
construct the exact self-expressed regression as SSL by using
Xk(t) as the predictor. Instead, we use X0

k (t). This is because
our aim is to estimate the signal part of each channel X0

i (t)
as accurate as possible. Yet, for SSL, they would only like to
calculate bi j as the partial dependence between two channels.
From this perspective, our method of (9) is not the exact SSL
algorithm.

Furthermore, considering the inherent system dynamics, for
different t , the spatial distribution of �P(t) and �T (t) may
change due to external disturbance. Consequently, the sub-
space structures of X0

i (t), i = 1, . . . , p, would change. For
example, as shown in Fig. 2, around the time period of day
11.5, all the FBG signals move together, following the global
pattern. Later around day 11.8, after a sudden falling slope,
the FBG signals begin to move in two different clusters.
Each cluster has its local �Pm(t) and �Tm(t), m = 1, 2.
Then, after another arising and falling slope, the FBG signals
begin to move in three subsystems, with three local �Pm(t)
and �Tm(t), m = 1, 2, 3. To capture this temporal subspace
structure of X0

i (t), we further relax bi j , j = 1, . . . , p by
allowing them to change over time as bi j(t), t = 1, . . . , L.
However, this naive relaxation would give too much flexibility
on the change of bi j(t), which could lead to severe over-
fitting. Considering that, in reality, temporal distributions of
environmental conditions usually change smoothly over time,
we suggest penalizing the change of bi j(t) to encourage its
smoothness. As such, the final estimation of Step 1 can be
formulated as

min
bi (t),t=1,...,L

L∑
t=1

Zi(t)
2 + λ1

L∑
t=1

‖bi (t)‖1

+ λ2

L∑
t=2

‖bi (t) − bi(t − 1)‖2
2

s.t. Zi(t) = Xi (t) −
p∑

j=1

bi j(t)X0
j (t), bii(t) = 0 (10)

where bi (t) = [bi1(t), . . . , bip(t)]′ ∈ Rp. This construction is
similar to the formulation of [37], where a dynamic algorithm
of SSL is proposed by allowing bi(t) to change over time
as well. However, besides the abovementioned difference
between our method and SSL, we also differ from [37] by
using a different way to regularize the system dynamics.
In particular, we add the Laplacian penalty ‖bi (t)−bi (t −1)‖2

2
to enforce its smooth varying over time. This is because in
our application, the fluid dynamics in tubes change over time
gradually. Yet, Zhang et al. [37] added an elementwise l1

penalty, i.e., the fused LASSO penalty, ‖bi (t) − bi (t − 1)‖1

to encourage stepwise change of bi (t). This is because in
their application of manufacturing systems, they assume that
some ON–OFF operations would lead to stepwise change of
the dependence relationships of different channels.

Proposition 1: Define Y ∈ RL×L(p−1) with the components
Yt,(t−1)(p−1)+1:t (p−1) = [X0

1(t), . . . , X0
i−1(t), X0

i+1(t), . . . ,
X0

p(t)] and other components are 0. D ∈ R(L−1)(p−1)×L(p−1)

is the first-order difference matrix whose Di,i = −1 and
Di,i+p−1 = 1 for i = 1, . . . , (L − 1) × (p − 1). Li =
(Y′Y + λ2D′D). Then, the optimization problem of (10) is
equivalent to a LASSO problem, i.e.,

min
β i

‖Wi − Riβ i‖2
2 + λ1‖β i‖1 (11)

where Wi = L
− 1

2
i Y′Xi with Xi = [Xi(1), . . . , Xi (L)];

Ri = L
1
2
i . The solved β i = [bi(−i)(1)′, . . . , bi(−i)(L)′]′ ∈

RL(p−1) with bi(−i)(t) = [bi1(t), . . . , bi(i−1)(t), bi(i+1)(t), . . . ,
bip(t)]′ ∈ Rp−1.

Proposition 1 indicates that (10) can be effectively solved
using standard LASSO solvers. Then, based on Step 1,
Step 2 can be trivially derived.

Remark 1: It is to be noted for different sensors, since
their Var(X̃ i (t)) are different, the same set of {λ1, λ2} may
have different regularization results, which in turn makes the
estimation results of Var(X̃ i (t)) incomparable. To avoid this,
we propose to normalize the first term in (10) by replacing
Zi(t)2 to Zi (t)2/Vi , where Vi = Var(X̃ i (t)) is the variance of
the estimated X̃ i(t) in the last iteration, i.e.,

min
bi (t),t=1,...,L

L∑
t=1

Zi(t)2

Vi
+ λ1

L∑
t=1

‖bi (t)‖1

+ λ2

L∑
t=2

‖bi (t) − bi(t − 1)‖2
2

s.t. Zi (t) = Xi (t) −
p∑

j=1

bi j(t)X0
j (t), bii(t) = 0 (12)

which can be solved with the corresponding LASSO solu-
tion in (11) by replacing Li = (Y′Y/Vi + λ2D′D) and
Wi = L−(1/2)

i Y′Xi/Vi . In this way, we may guarantee the
fair variable regularization and get comparable X̃ i(t) for
different sensors for the next iteration. The detailed procedure
of our proposed signal–noise separation method is shown
in Algorithm 1.

Remark 2: In general, the selection of optimal tuning para-
meters for a given model can be a difficult task, which
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Algorithm 1 Iterative Signal–Noise Separation of Xi (t)
for a Short Window Based on the Spatiotemporal Model
Input: Data Xi(t), t = 1, . . . , L, i = 1, . . . , p,

pre-specified λ1 and λ2.
In Iteration k = 1,
for each i do

Solve β1
i and get the corresponding

b1
i (t), t = 1, . . . , L according to (12) by setting

X0
j (t) = X j(t) for j �= i and Vi = Var(Xi(t)).

Get the residual Zi(t) = Xi (t) − ∑
j �=i b1

i j(t)X0
j (t).

Calculate Vi = Var(Zi(t)).

for Iteration k = 2, . . . do
for each i do

Solve βk
i and get the corresponding

bk
i (t), t = 1, . . . , L according to (12) by setting

X0
j (t) = X j (t) − Z j(t) for j �= i .

Get the residual Zi(t) = Xi (t) − ∑
j �=i bk

i j(t)X0
j (t).

Update Vi = Var(Zi (t)).

if
∑p

i=1 ‖βk
i − βk−1

i ‖2 < ε then
Break, and set the final estimated X̃ i (t) = Zi(t),
and Vi = Var(X̃ i(t)).

becomes further complicated as the number of tuning parame-
ters increases. Here, we propose to follow the tuning procedure
for the fused LASSO in [38] to reduce the computation.
Specifically, to simplify the search for the optimal tuning
parameters, given the sample size L, we reparameterize λ1

and λ2 in terms of λ0 and ρ ∈ (0, 1) such that λ1 = ρλ0

and λ2 = (1 − ρ)λ0. We can think of λ0 as an overall tuning
parameter with ρ determining how much emphasis is placed
on sparsity versus smoothness. By fixing the possible values
that ρ can take, we effectively reduce the search over λ1 and
λ2, to a search over one parameter λ0. In particular, we initially
fix the possible values of ρ (e.g., {0.1, 0.3, 0.5, 0.7, 0.9}). For
each value of ρ, we find the value of λ0 that results in each
estimated variable to be 0 and denote this value by λmax

0,ρ . Then,
we chose a fixed number of candidate values for λ0 from the
interval (0, λmax

0,ρ ). For a pair of parameter {λ0, ρ} (or {λ1, λ2}),
we input them into Algorithm 1 and get the converged Zi(t)
and Vi . Then, we evaluate this pair of parameters based on the
following criterion:

L
p∑

i=1

log

(∑L
t=1 Zi(t)2

Vi L

)
+ log(L)

p∑
i=1

kρ,λ0(i) (13)

and select the pair of parameters that has the smallest value
of (13). In (13), kρ,λ0(i) is the number of nonzero elements
in bi(t), t = 1, . . . , L, given the current ρ and λ0. The term
of

∑p
i=1 kρ,λ0(i) represents the complexity of the model, with

bigger values indicating bigger complexity. This criterion is
similar to the Bayesian information criterion. Its rational is
that by minimizing (13), we attempt to find an appropriate
model without overfitting the data. The first term will tend
to be smaller for complex models, whereas the second term
will tend to be smaller for simple models. For computational

reasons, we prefer this approach for selecting the optimal
tuning parameters.

Remark 3: Algorithm 1 is a standard block coordinate
descent algorithm, and its convergence rate depends on the
convergence criterion, ε, and convergence rate of the solver
of each block, i.e., the solver of (12). In general, ε is a
small positive variable. Here, we set it to be 10−3 in all
the numerical studies of this article. For the solver of (12),
we use the iterative shrinkage thresholding algorithm (ISFA),
which is generally used for large-scale LASSO problems [39].
Its convergence rate is O(1/k), where k is the iteration
index. To accelerate the convergence rate, other algorithms,
such as fast ISFA (FISFA) [40] that can guarantee O(1/k2)
convergence rate, can also be used. For ISTA or FISTA, since
its computation only involves matrix and vector multiplication,
the computation complexity of each iteration in Algorithm 1
is in the order of O(L2 p3), where L is the length of the time
window and p is the number of sensors. It is such a small deal
for current high-performance computation resources. To illus-
trate one case with p = 20 and L = 100 (in our following
numerical studies), it only takes less than 2 min to compute
one iteration on a single-core personal laptop. The convergence
can be achieved very fast as well within 30–40 iterations.
As such, the total computation time of Algorithm 1 is not
computing intensive. Furthermore, in practice, the wall thick-
ness thinning process is very slow, in units of weeks or even
months. What it means is that the time window of online
monitoring can also be set in units of weeks or even longer
period of time. Therefore, the computation time of modeling
inference of (12) based on Algorithm 1 for each time window
is almost negligible compared with the length of each time
window.

V. ONLINE MONITORING SCHEME FOR REAL-TIME

SINGLE SENSOR ANOMALY DETECTION

A. Modeling the Relationship Between the Extracted
Feature and the Thickness

Once we extract X̃ i (t) and Vi , we can infer its relationship
with μi according to the physical law

Vi = θ1

μ2
i

+ θ2. (14)

Here, θ = [θ1, θ2] can be easily estimated according to the
minimum least square algorithm

min
θ

p∑
i=1

(Vi − h(μi , θ ))2, where h(μi , θ) = θ1

μ2
i

+ θ2 (15)

with the solved

θ̂ = (U′U)−1(U′V) (16)

where U = [[1/μ2
1, . . . , 1/μ2

p]′, 1] and 1 ∈ Rp is the vector
with all components equal to 1, and V = [V1, . . . , Vp]′. Based
on the estimated θ̂ , for any given tube with wall thickness μ#,
we can predict its residual variance as h(μ#, θ̂). Furthermore,
we can derive its 1 − α upper prediction interval[

0, h(μ#, θ̂) + q
tp−2

1−α

√
σ 2

# + g(μ#)
]

(17)
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Fig. 4. Multiple thickness measurement for six randomly selected locations
of FBG sensors in Fig. 2.

where g(μ#) = σ 2
# (a′

#(A
′A)−1a#)

1/2. Here a# = ((∂h(μ#,
θ))/∂θ)|θ=θ̂ , A ∈ Rp×2 with Ai, j = ((∂h(μi , θ))/∂θ j)|θ=θ̂ ,
j = 1, 2, and σ 2

# = ∑p
i=1(Vi − h(μi , θ̂))2/(p − 2).

Remark 4: It is worth mentioning that in practice, the mea-
sured wall thickness with limited measurement precision may
introduce additional errors. For example, Fig. 4 shows the
repeated measurements (eight or nine times) of tube wall
thicknesses of some selected FBG sensors’ locations in Fig. 2,
whose standard deviations are almost as large as 0.2. In this
case, the model of (14) should consider the error in variable
to avoid introducing additional noise:

μik = si + eik

Vi = h(si , θ) = θ1

s2
i

+ θ2 (18)

where eik is the unobservable measurement noise for the kth
measurement of true wall thickness si of sensor i ’s location.
Due to it, the observed thickness μik is different from the
true one that affects Vi . To solve (18), and we can adopt
the approximation estimation method in [41]. In particular,
we estimate θ according to

min
θ

p∑
i=1

(Vi − h̃(μ̄i , θ))2 (19)

with

h̃(μ̄i , θ) = h(μ̄i , θ) + 1

2

∂2h(μ̄i , θ )

∂μ̄2
i

σ 2
s = θ1

μ̄2
i

+ θ2 + 3θ1

μ̄4
i

σ 2
s

(20)

where μ̄i is the average of repeated wall thickness measure-
ments and σ 2

s is the variance of eik and determined by the
precision of measurement instrument. Then, this leads to the
estimation with error adjustment as

θ̃ = (Ũ′Ũ)−1(Ũ′V) (21)

with Ũ = [[1/μ̄2
1 + 3σ 2

s /μ̄4
1, . . . , 1/μ̄2

p + 3σ 2
s /μ̄4

p]′, 1]. Based
on the estimated θ̃ in (21), for any given tube with wall
thickness μ#, we can predict its residual variance and the
corresponding prediction interval following the similar pro-
cedure as in (17). Furthermore, we can derive its 1 − α upper

prediction interval

[
0, h(μ#, θ̃) + q

tp−2

1−α

√
σ 2

# + g̃(μ#)
]

(22)

where g̃(μ#) = σ 2
# (ã′

#(Ã
′Ã)−1ã#)

1/2. Here ã# = ((∂ h̃
(μ#, θ ))/∂θ)|θ=θ̃ , and Ã ∈ Rp×2 with Ãi, j =
((∂ h̃(μi , θ))/∂θ j)|θ=θ̃ , j = 1, 2, and σ 2

# = ∑p
i=1(Vi − h̃

(μi , θ̃))2/(p − 2).

B. Thinning Process Detection Scheme

Based on the developed model in Section V-A, we can
design an online monitoring scheme for the wall thinning
process by calculating Vi based on online samples. Remember
that since the wall thinning process is very slow compared
with the sampling frequency, in Section II, we assume that
in the short window with sampling time length L, the tube
wall thickness will not change. As such, for online monitoring,
we can also divide the sampled FBG signals into sequential
short windows of length L, i.e., the nth window Wn = [L(n −
1) + 1, nL] includes online samples from t = (n − 1)L + 1
to t = nL. Then, for each short window, we can fit the
data using our spatiotemporal-based signal–noise separation
algorithm developed in Section IV and get the residuals’
variance for each sensor, denoted as Vi(n). Keeping in mind
that as Vi(n) increases, the thickness decreases, and Vi(n) can
be used to construct the online monitoring statistic. Suppose
that the minimum tolerable tube wall thickness is μ�, and then,
based on the prediction interval of residual variance in (17)
[or (22)], we can get

V � = h(μ�, θ̂) + q
tp−2

1−α

√
σ 2

0 + g(μ�). (23)

Then, if Vi(n) > V �, it indicates that with enough confidence,
the current tube wall thickness of location i is smaller than the
minimum tolerable μ�. Note that here we construct p univari-
ate monitoring schemes for each sensor (or tube) individually
since we assume the erosion of different tubes would not
affect each other. However, if erosion of close tubes is driven
by some common environmental factors, we recommend to
cluster tubes and construct multivariate monitoring schemes
for each cluster of tubes jointly. This can be easily achieved
by combining Vi (n) of different values of i together into
a Hotelling T 2 test statistic. Furthermore, consider that the
thickness decrease magnitude is cumulatively large over time,
and we further incorporate the exponential weighted mov-
ing average (EWMA) technique into the monitoring scheme,
to improve the detection efficiency, i.e.,

�i (n) = (1 − γ )�i (n − 1) + γ Vi(n) (24)

where γ is the tuning parameter. For the EWMA monitoring
statistic [42], the corresponding control limit would approxi-
mately be V � = h(μ�, θ̂)+q

tp−2

1−α((γ /(2 − γ ))(σ 2
0 + g(μ�)))1/2.

Finally, we define that if �i (n) > V �, the monitoring scheme
will trigger an alarm because the current wall thickness of sen-
sor i has dropped below μ� and should require maintenance.
The schematic of the monitoring procedure is shown in Fig. 5.
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Fig. 5. Schematic of the proposed online monitoring scheme for tube wall thinning process.

VI. NUMERICAL STUDIES

To evaluate the efficacy of the proposed signal–noise sepa-
ration algorithm and online monitoring scheme, we generate
some synthetic data for analysis.

A. Scenario I

First, we consider a simple scenario with data of only one
window, to test the performance of the signal–noise separation
model in Algorithm 1. In particular, we assume that for each
sensor i , we generate X0

i (t) as

X0
i (t) = φ(t)′b0

i (t)

where φ(t) = [φ1(t), . . . , φd(t)]′ ∈ Rd are d basis functions
and b0

i (t) = [b0
i1(t), . . . , b0

id(t)]′ ∈ Rd are the coefficients.
In particular, we set φk(t), k = 1, . . . , d , as Fourier bases
φk(t) = cos(5πkt/L), t = 1, . . . , L, and we set b0

i (t) to
change over time with b0

ik(t) = z0
ik cos(π t/L), t = 1, . . . , L,

and ζ 0
k = [z0

1k, . . . , z0
pk] ∼ Np(0,�0), where �0 is the

covariance matrix with σi j = 0.5|i− j |. The evolving of φ(t)
and b0

i (t) over time demonstrates the temporal dynamics, and
the correlation of b0

ik(t), i = 1, . . . , p demonstrates the spatial
structure of multiple sensors. We further generate X̃ i(t) ∼
N(0, σ 2s2

i ) where s2
i is different for sensors. In particular,

we sample si from uniform distribution U(1, 3). Then, we set
Xi (t) = X0

i (t) + X̃ i (t) and use Algorithm 1 for inference.
Besides our proposed signal–noise separation Algorithm 1

(in the following, we abbreviate it as OUR), for intensive
study, we further consider some baselines in the field of
signal source separation and enhancement for performance
comparison.

1) BSS Mentioned in [43]: The algorithm is based on inde-
pendent vector analysis (IVA) and nonnegative matrix
factorization (NMF). After source separation, we recon-
struct the signal part X0

i (t) and use the left part as noise
X̃ i(t) for inferring Vi .

2) Spatiotemporal Model-Based Signal Enhancement (STE)
Mentioned in [44]: Since the original algorithm requires
knowing the correlation of noise X̃ i (t), we assume
that this information is known in advance. Though this
assumption may not be valid in reality, we can still
use here and treat the results as the upper limit of the
algorithm’s performance.

3) Naive Estimation (NE) Method: For each window,
we further divide the signal into M bins (segments)
lm, m = 1, . . . , M . For each bin, we average the data
Xi(t) of each bin as the X0

i (t), t ∈ lm and get the
corresponding X̃ i (t), t ∈ lm , and then, we use X̃ i (t) of
all the bins together to infer Vi .

Fig. 6 shows the Xi(t), the true X0
i (t), and the estimated

X̂0
i (t) based on OUR, BSS, and STE (here, we do not show

the results of NE since it is a straightforward piecewise
estimation) of three selected sensors for the setting with
p = 20, L = 100, d = 3, and σ = 0.2. We can see that
X̂0 OUR

i (t) can be very close to the true X0
i (t), demonstrating

the efficiency of the proposed signal–noise separation algo-
rithm, while X̂0BSS

i (t) and X̂0STE
i (t) lose accurate tracking.

Then, based on ˆ̃Xi(t) = Xi (t) − X̂0
i (t), we further calculate

V̂i and observe its difference from Vi in Fig. 7. It is clear that
among these four methods, V̂ OUR

i has the smallest difference
from the true Vi . This validates our idea that the proposed
signal–noise separation algorithm can track Vi accurately and
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Fig. 6. Synthetic signals of three selected sensors for Scenario I. (a) Sensor 10. (b) Sensor 15. (c) Sensor 13.

Fig. 7. Estimated residual variance V̂i and the true values Vi for Scenario I.

TABLE I

ESTIMATION BIAS (×10−2 AND VARIANCE IN THE PARENTHESIS) OF

DIFFERENT METHODS FOR CASE I UNDER DIFFERENT VALUES OF σ

hence is potential to detect the change of Vi , which will be
further evaluated later.

We further evaluate the performance of our signal–noise
separation under different values of σ = 0.05, 0.10, 0.15, 0.20.
In each experiment for a particular σ , we random generate
si ∼ U(1, 3), i = 1, . . . , 20 and conduct experiments follow-
ing the same procedure as above and then record the estimation
results V̂i of different methods. We repeat the experiment for
in total 100 times and use the results to calculate the bias and
variance of the estimators V̂i of different methods. The results
are shown in Table I. Clearly, OUR performs dominantly better
than the other algorithms under different magnitudes of σ ,
showing the efficacy of our proposed algorithm.

B. Scenario II

Based on these basic results, we further conduct experiments
to imitate the scenario of FBG signals in real apparatus of tube

wall thinning process detection. We still temporarily focus on
data of single window. In particular, we mimic the temperature
and pressure changes in the tube by generating �P(t) =∑d

k=1 a1k(t)φ(5πkt/L) and �T (t) = ∑d
k=1 a2k(t)φ(5πkt/L)

for t = 1, . . . , L. We consider alk(t) = zlk cos(π t/L), t =
1, . . . , L, and ζ k = [z1k, z2k] ∼ N(0,�α) with σa,i j = 0.5|i− j |
for k = 1, . . . , d .

For each sensor, we further mimic its local temperature and
pressure variations by generating its own P̃i (t) ∼ N(0, σ 2

P )
and T̃i (t) ∼ N(0, σ 2

T ) for t = 1, . . . , L. Then, for each sensor,
we generate its wall thickness μi from uniform distribution
U(1, 5) and set X0

i (t) = β1/μi�P(t) + β2�T (t), X̃ i (t) =
β1/μi P̃i (t) + β2T̃i (t), where β1 and β2 are fixed constants.
Then, we combine Xi (t) = X0

i (t) + X̃ i(t) and use OUR
together with the three baselines for inference.

Fig. 8 shows the Xi(t), the true X0
i (t), and the estimated

ones in our simulation replication for the case with the setting
p = 20, L = 100, q = 3, σT = σP = 0.5, β1 = 4, and β2 = 1.
In this case, all the methods seem to be able to track X0

i (t)
to some degree. Yet, they still have larger fluctuations, and
our method X̂0OUR

i (t) has the smallest distance from the true
X0

i (t). This can be better shown in Fig. 9, where based on
ˆ̃Xi(t) = Xi (t) − X̂0

i (t), we calculate V̂i , i = 1, . . . , p and
use them to estimate θ1 and θ2 in (15) according to (16).
In particular, V̂ OUR

i is closest to Vi . Yet V̂ BSS
i and V̂ NE

i have
larger fluctuations around Vi , and V̂ 0 STE

i is consistently larger
than V 0

i . Furthermore, it is clear that the estimated regression
line of OUR is quite close to the line of true relationship,
demonstrating that the proposed method can recover the
relationship between μi and Vi . Yet, for the other methods,
their lines deviate from the true line, especially for thinner
wall thicknesses, which is the most crucial part required to
be accurately estimated and monitored. To further verify the
accuracy of the proposed method, we repeat the experiment
for 100 replicates. Each replicate includes data generation,
signal–noise separation, and regression estimation. Based on
the estimated V̂i , θ̂1, and θ̂2, we calculate that the estimation
bias and variance of V̂i , θ̂1 and θ̂2 of different methods and
report them in Table II. Clearly, OUR has much smaller bias
than the other methods for Vi and consequently much smaller
bias for θ1 and θ2. This builds the foundation of applying OUR
algorithm for thinning process monitoring.

Finally, we also evaluate the performance of our differ-
ent algorithms under different values of (σT , σP ). In each
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Fig. 8. Synthetic signals of three selected sensors for Scenario II. (a) Sensor 10. (b) Sensor 2. (c) Sensor 20.

Fig. 9. Scenario II: synthetic thickness μi versus the estimated residual
variance V̂i . The lines of different colors are the fitted relationships between
Vi and μi using V̂i based on different numerical methods. The lines with
triangle markers are their corresponding 0.99 upper prediction intervals based
on different numerical methods; The blue line with “*” marker is the true
relationship between Vi and μi .

TABLE II

ESTIMATION BIAS (×10−2 AND VARIANCE IN THE PARENTHESIS)
OF DIFFERENT METHODS FOR CASE II UNDER

DIFFERENT VALUES OF σT AND σP

experiment for a particular pair of (σT , σP ), we randomly
generate μi ∼ U(1, 5), i = 1, . . . , 20 and conduct experi-
ments following the same procedure as above, we record the
estimation results V̂i of different methods and further use

V̂i to get the regression coefficients θ̂1 and θ̂2. We repeat
the experiment for in total 100 times and use the results
to calculate the bias and variance of the estimators V̂i of
different methods, θ̂1 and θ̂2. The results are also tabulated
in Table II. Similar to Scenario I, OUR performs dominantly
better than the other algorithms under different magnitudes
of (σT , σP ).

C. Scenario III

Finally, we set up an online thinning scenario for the
experiment. It is to be noted that from the first two scenarios,
we have demonstrated that the baseline algorithms cannot
estimate Vi and the relationship between Vi and μi accurately.
Consequently, their online detection schemes have too poor
performance to be presented here. As such, we only show the
performance results of our detection scheme in the following.
In particular, in each simulation replicate example, for the first
window with n = 0, we randomly get the wall thicknesses
of the 20 sensors by sampling from the uniform distribution
U(1, 5) and generate the data in the same way as Scenario II.
Then, for later windows n = 1, . . . , 100, we mimic the wall
thinning process by setting μi (n) = max{μi − 0.03n, 0.1},
which means that the wall thicknesses of all the sensors
decrease with speed 0.03 per time window and stop
when they decrease to 0.1. Then, we use the proposed online
monitoring scheme to detect the change of μi (n). In particular,
we evaluate its performance in terms of five different criteria:
1) the average detection delay is ADD = E[si − τi |si ≥ τi ],
where τi = inf{n > 0, μi (n) < μ�} and si = inf{�i (n) > V �,
n > τi}; 2) the average false positive number is AFP =
E[∑si −1

n=1 I (�i (n) > V �)], and here, I (·) = 1 if the condition
is satisfied and I (·) = 0 otherwise; 3) the average false
negative number is AFN = E[∑N

n=si
I (�i (n) < V �)];

4) the Recall = E[(∑N
n=si

I (�i (n) > V �))/(N − si + 1)];
and 5) the Precision = E[(∑N

n=si
I (�i (n) > V �))/(

∑N
n=1 I

(�i (n) > V �))]. The first three criteria focus on evaluating the
sequential decision performance, whereas the last two criteria
focus on evaluating the overall performance. In our numerical
studies, we consider different parameter settings of μ�, α
(the corresponding V �), and γ . For each artificial setting
r = 1, . . . , 5, we conduct the experiments for 100 replicates
and calculate their five criteria, namely ADD, AFP, AFN,
Recall, and Precision, as shown in Table III.
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TABLE III

DETECTION PERFORMANCE WITH γ = 0.1 AND γ = 0.5 FOR DIFFERENT CHANGE ARTIFICIAL SETTINGS
(NUMBERS IN THE PARENTHESES ARE THE CORRESPONDING STANDARD DEVIATIONS)

First, for all the artificial settings of γ and μ�, as α increases
with larger V �, ADD and AFN increase, while AFP decreases.
This is easily interpretable since larger V � indicates smaller
P{�i (n) > V �} and consequently larger ADD and AFN and
smaller AFP. Similarly, as α increases, we can get lower
Recall and higher Precision. Another thing to be noted is
that for all the settings of γ , if restricting AFP to be fixed,
as μ� decreases, the ADD and AFN decrease. This desirable
phenomenon is not very intuitive. It is a merit of the quadratic
property of V = h(μ, θ ): as μ� decreases and V � increases,
the decreasing speed of

∫
μ<μ� P(h(μ, θ ) > V �)dμ is smaller

than the decreasing speed of
∫
μ>μ� P(h(μ, θ ) > V �)dμ.

Finally, as μ� decreases, given a fixed AFP, ADD and AFN
decrease moderately. Similarly, given a fixed Precision value,
Recall increases.

The influence of γ is a bit complex. First, for a certain μ�,
given the same α level, larger γ leads to smaller ADD and
AFN, but larger AFP. This is reasonable since larger γ puts
more stress on the current single window and hence is more
aggressive and unstable with larger variation. Therefore, �i (n)
is more probable to go out of V � and leads to either earlier
true positive detection or more false-positive detection. It is
also interesting to observe that for the monitoring schemes
with different values of γ , even if we restrict their AFP to be
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Fig. 10. Schematic of the oil bath test apparatus.

the same by setting their corresponding α to be different, their
ADD and AFN are still slightly different in the sense that the
scheme with larger γ would have smaller ADD and yet larger
AFN. In practice, γ can be selected based on the preference
of either aggressive detection or conservative detection.

VII. CASE STUDIES

In this section, we apply the proposed methodology to tube
wall thinning detection with both laboratory experiments and
real field trials.

A. Lab Experiment via Oil Bath Test

Before applying the designed modeling and monitoring
scheme in the real plant environment, we first conduct a
thorough laboratory test for performance evaluation. To imitate
the real plant environment, we design our laboratory test
apparatus, as shown in Fig. 10.

In particular, the apparatus includes a section of the tube
submerged in a heating pot. The material of the tube is SA213,
which is a type of American standard seamless alloy steel pipe,
typically employed for boiler tubes used in oil and refinery
industries. We mount in total p = 10 FBG sensors at ten
different locations of the tube. In the experiment, Sensors 1–5
are fixed with adhesive at the section of the tube where there
is noticeably localized inner wall thinning. The other sensors
are fixed elsewhere with no changes in the wall thickness for
the whole experiment.

In our experiment, we artificially accelerate the tube wall
thinning process via etching the inner wall of the tube for
several runs. For each run, we inject aqua regia into the
tube and let the aqua regia react with the bottom part
(i.e., the bending part) of the tube until the reaction stops.
The bottom wall will become thinner and we measure the
wall thicknesses at the locations of Sensors 1–5 with repeated
measurements. The measurement results after each of in total
five etching runs are shown in Table IV. After each run of
etching, we place the tube on a heating pot, which is filled with
Therminol 59 (termed as oil for the rest of this article). The
bending section of the tube is submerged in the oil bath, which
can create a relatively stable and controlled high-temperature
environment surrounding the tube. To mimic the operation
environment of the tube in the real plant, we heat the oil up
to 150 ◦C in the meanwhile pressurize the tube with water

TABLE IV

AVERAGED THICKNESS, μ̄i = μ0+μe
i , FOR SENSORS i = 1, 2, 3, 4, 5 FROM

REPEATED MEASUREMENTS AFTER EACH OF THE FIVE RUNS

(NUMBERS IN PARENTHESES ARE STANDARD DEVIATIONS

OF REPEATED MEASUREMENTS)

by a hydraulic pressure pump. Then, we collect the FBG
signals for a certain time period (about 1–2 h) for analysis.
To evaluate the performance of the proposed online monitoring
scheme, we treat the signals of the five runs as data coming
sequentially, with stepwise thinning process. In particular,
we set the window size L = 50. In reality, we recommend
to set L = 2880, i.e., one day. This sample size can provide
sufficient samples for accurate model estimation from the
statistical perspective. However, from a practical perspective,
if the tube thinning process is very slow and real-time data
transmission is limited, a longer window size (say one week)
is also feasible. Then, for each run, we have different numbers
of windows, i.e., N1 = 3, N2 = 4, N3 = 3, N4 = 4, and
N5 = 3 (note that we discard the signals at the end of
each run if they are not enough to form a window). Then,
we cascade signals of all these five runs together sequentially
and get in total N = ∑5

i=1 Ni = 17 time windows. For each
window n, we implement the spatiotemporal model for the
p = 10 sensors and get their Vi (n), i = 1, . . . , p. However,
since we only measured the thicknesses of Sensors 1–5 where
the thinning process occurred, we use these sensors’ Vi (n) and
μi for further analysis. The relationship between Vi (n) and
μi(n) for all the 5 × 17 = 85 points is shown in Fig. 11.
Clearly, there is a general pattern that as μi(n) decreases,
Vi(n) increases. Suppose that μ� = μ0 − 1 is the minimum
tolerable thickness, and then, the thicknesses of all the sensors
in first four runs are tolerable, whereas the thicknesses of
Sensors 2–4 in the last run are out of tolerance and to be
detected. We use the data of the first four runs to infer the
relationship between μi (n) and Vi(n) and use the data of
the last run for online detection. The fitted regression using
Vi(n), i = 1, . . . , 5, of n = 1, . . . , 14, together with its 0.99
upper prediction interval is shown in Fig. 11. R2 = 0.691.
Based on the upper prediction interval for μ�, we can get the
detection threshold V � = 1.8726 × 10−4. Then, we imple-
ment the monitoring scheme of (24) for these five locations.
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Fig. 11. μi (n) versus estimated Vi (n) based on our proposed signal–noise
separation model for the oil bath test data. The black line is the fitted rela-
tionship based on (21). Its R2 = 0.691. The dashed line is the corresponding
0.99 upper prediction interval calculated by (22).

Fig. 12. Monitoring statistic (24) of Sensors 1, 2, 3, 4, and 5 over
n = 1, . . . , 17. The red line is the threshold V �.

The monitoring statistic �i (n) for i = 1, . . . , 5 and n =
1, . . . , 17 is shown in Fig. 12. For the first four runs with
the first n = 1, . . . , 14, the monitoring statistics of all the
five sensors keep consistently below the threshold, whereas
for the last n = 15, 16, and 17, the monitoring statistics of
Sensors 2–4 go out of the threshold, triggering an alarm that
their tube wall thicknesses are below μ�, whereas the monitor-
ing statistics of Sensors 1 and 5 are still below the threshold.
This is consistent with the real situation that their thicknesses
of Sensors 1 and 5 are still above μ�, whereas the thicknesses
of Sensor 2–4 have dropped below μ�, demonstrating the
efficiency of the proposed monitoring scheme.

B. Field Trial in HRSG

We have investigated the performance of the proposed
methodology in lab experiments. In this section, we carry out
field trial to further evaluate the implementation applicability
of the proposed methodology for tube wall thinning detection
in the HRSG plant, where the wall thinning of tubes is one of
the common causes of failures in practice.

In our field trial, we choose a representative HRSG site,
and p = 13 tubes connected to the same compartment as
Fig. 1(a) are mounted with FBG sensors and monitored. Due to
confidentiality and security reasons, we cannot present details
about the plant, the tube structure, or the mounting process.
The mounting procedure for the FBG sensors onto the tube
is with high resemblance to those we used for laboratory

TABLE V

THICKNESSES, μi = μ0 + μe
i , OF p = 13 TUBES IN THE FIELD

TRIAL (NUMBERS IN PARENTHESES ARE STANDARD

DEVIATIONS OF REPEATED MEASUREMENTS)

environment test in Section VII-A. The wall thicknesses of
tubes (location), before the FBG sensors are mounted, are
measured at the beginning of the experiment and are presented
in Table V (due to confidential reason, we hide the measure-
ment unit here and mask the thickness magnitude by setting
it as a reference thickness of μ0 plus a deviation).

The FBG sensors have a sampling rate of 1 KHz, with in
total data of about 19 days for the whole test duration. We first
preprocess the data by downsampling the data to 1/30 Hz
by averaging samples of each half minute for system noise
reduction. For the downsampled data, we treat the window
size L = 720 (6 h), with in total 76 windows available for the
19 days. Denote their indices as n = 0, 1, . . . , 75.

Then, we use window n = 0 for offline learning to
estimate the relationship between Vi (0), i = 1, . . . , p and
μi ≡ μi (0) (because there is no thinning process in these
19 days) based on our signal–noise separation algorithm.
From Fig. 13, we can see that the spatiotemporal model can
fit the original FBG signals of window n = 0 very well.
Then, we calculate the regression residuals and their variance
Vi(0), i = 1, . . . , p, and draw them together with their
corresponding thicknesses in Fig. 14. Obviously, the variance
of FBG sensor decreases as its thickness increases. This is
consistent with our expectations. The regression result with
consideration of error in a variable is shown in Fig. 14 with
black line, and its corresponding 0.99 upper prediction interval
is shown in the dashed line. R2 = 0.753.

Suppose that the minimum tolerable thickness of the HRSG
is μ∗ = μ0 + 0.4, and we can get the monitoring threshold
V � based on a specific α according to (23). We treat the
FBG signals with n = 1, . . . , 75 as online testing windows
and implement the online monitoring scheme in the following
way. In particular, we calculate �i (n), n = 1, . . . , 75, for
each sensor i = 1, . . . , p, and see whether �i (n) goes out
of the threshold. Ideally, for signals of FBG sensor i = 5 with
μ5 = μ0 + 0.39 (the dot in the top-left corner of Fig. 14),
its �5(n) is expected to be higher than V � for most windows,
whereas for the other sensors with μi > μ0 + 0.4, i �= 5, their
�i (n) are expected to be smaller than V �. As such, we evaluate
the monitoring performance in terms of the true detection
rate (TDR) of i = 5 and the false detection rate (FDR) of
i �= 5. The results under V � with different values of α are
shown in Fig. 15. It is clear that the TDR of i = 5 is almost
equal to 1 all the way, whereas FDRs of all the other sensors
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Fig. 13. Prediction of the FBG wavelength drift based on our proposed signal–noise separation model for window n = 0 for the field trial data.

Fig. 14. μi versus the estimated Vi (0), i = 1, . . . , p for the field trial
data. The black line is the fitted regression based on (19). Its R2 = 0.753.
The dashed line is the corresponding 0.99 upper prediction interval calcu-
lated by (22).

Fig. 15. Detection rate of the monitoring statistic (24) with different values
of V � (under different values of α) for the field trial data.

almost go to zero quickly as α increases, demonstrating the
efficiency of the proposed monitoring scheme. In practice,
we may specify α based on domain or prior knowledge.

VIII. CONCLUSION

We propose a data-driven framework for online monitoring
of tube wall thinning process using FBG sensors in a dynamic

and noisy environment. In particular, we develop a spatiotem-
poral model for FBG signal feature extraction. It can remove
the environmental influence and extract the FBG signal feature
that relates to tube wall thickness. Then, we construct the
relationship between the selected feature and the tube wall
thickness by taking physical law as a guideline. Finally,
an online monitoring scheme is constructed to monitor the
extracted feature in real time to detect thickness change. Both
the laboratory test and the field trial experiment are conducted
to demonstrate the efficacy and efficiency of the proposed
methodology.

There are many potential extensions of the current method.
First, in some cases, when the tube diameter is large, it is
more reasonable to mount more than one FBG sensor on the
same tube to jointly detect the erosion of different parts of
the same tube. As FBG sensors on the same tube usually
share the same environmental conditions and have similar wall
thicknesses (thinning process), it would be better to analyze
FBG sensors on the same tube together and extend the current
methodology to a multivariate sensor-based online monitoring
scheme, which considers the correlations of FBG sensors on
the same tube. Second, in some cases, the global temperature
�P(t) and pressure �T (t) have time delays on different tubes
as �P(t − si P ) and �T (t − siT ). Here, si P and siT are the
local time delays of �P(t) and �T (t) on Tube i , respectively.
Then, the self-expressive model of (7) should consider signals
of other time points of other sensors as predictors, and a more
elegant model should be considered. In functional regression,
there are also some works to address this problem by taking the
integral of the predictor over the past [45]. How to incorporate
this time delay into the modeling framework also deserves
further exploration.
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