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Abstract—To better plan and schedule public transporta-
tion resources, it is crucial to understand the travel demand
from any location at any time. In this article, we focus on
analyzing the demand patterns for subway stations based
on the tap in data at each station entrance. It has been
reported that accurately predicting the arrival rates can help
improve the travel experience, and prevent over-crowding in
train carriages or platforms. We proposed a weighted dy-
namic time warping approach (WDTW) to adaptively cluster
similar patterns from multiple stations. These similarities
can be exploited in improving the prediction performance
because spatial temporal information is better utilized. We
demonstrated our approach and its effectiveness through a
real data example.

Keywords—Public transportation, arrival rate, dynamic
time warping, hierarchical clustering

I. INTRODUCTION

In public transportation planning and operation
scheduling, one of the most important information is the
travel demand, i.e., the volume of traffic at any time
slot. The fast development in computing power and data
management capability provides us with the opportunity
to infer the travel demand from high throughput historical
data. For example, in metro systems of many metropolitan
cities, a fare card needs to be tapped to enter a station
(origin), and the same card needs to be tapped to exit
another station (destination). These entry and exit data
record the number of passengers moving from one place
to another in fine granularity. Such information has been
proven valuable in both long term planning and short term
scheduling of public transportation resources in the most
cost effective way. As a result, analyzing such entry/exit
data has attracted much attention in the literature [1].

Among existing works, the analysis of subway travel
demand can be roughly categorized into long-term and
short-term periods. Long-term analysis estimates future
travel demand based on four-step transportation forecast-
ing model [2] or regression techniques. Transportation
forecasts have traditionally followed the sequential four-
step model, i.e., trip generation, trip distribution, mode
choice and route assignment [3], [4]. Regression models
are utilized to find out the relationship between subway
ridership and a series of influential factors [5], [6]. Short-
term models are designed to record the regular patterns of
travel flow for future predictions. Existing methods include
models based on time series analysis [7], [8], as well as

machine learning methods such as neural networks [9],
[10] and support vector machine [11].

However, most existing approaches focus on the mod-
eling and prediction of passenger entries from a single
station. They treat the entry data from different stations as
independent, and analyze them separately. Despite their
simplicity, neglecting the dependency in travel demand
among multiple stations has its limitations. First of all,
many stations are physically connected in the transporta-
tion network. A disruption in one station can quickly
propogate to other stations to change their demand pat-
terns. Secondly, the location of the station plays a crucial
role in driving the demand patterns. Clearly a station
in central business district has a very different demand
compared with a station in residential area. In contrast,
nearby stations in the same residential areas have very
similar demand patterns. The possible dependency among
certain stations permits information sharing to improve the
prediction accuracy for each individual station. Neverthe-
less, the dependency structure is unknown and not easy to
derive from network structure or population distributions.
Clustering based on real data of demand patterns is more
feasible and flexible.

Even though clustering is a mature technique, clus-
tering demand patterns have a few unique challenges.
Initially, subway entry count is usually collected with a
short time interval, which shows drastic fluctuations in
the long data sequence. Then the arrival rate function
cannot be directly derived from the raw data. Preprocess-
ing techniques like resampling and smoothing show be
considered. Besides, time deformations of peak hours is
often seen for different stations even though they belongs
to the same type of functional districts. For instance,
stations in different residential areas may have different
morning peak hours on the same day. This is caused by
the variation of distances between the stations and business
or industrial areas which provide plenty of job positions.
However, in this case the stations should be placed in the
same cluster, thus the influence of peak shift needs to be
relieved when clustering. Finally, subway arrival patterns
are quite different on weekdays and on weekends. It is easy
to explain, as people mostly go to work on weekdays and
take rest on weekends. Therefore, the factor of days of the
week should be taken into account when analyzing travel
demand.

In this study, to overcome the above challenges we
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Fig. 1. Original entry rate data in one day.

accomplish the clustering task with a distance measure
based on dynamic time warping (DTW) [12]. DTW is
a robust method for calculating the dissimilarity be-
tween temporal sequences, which is originally proposed
for automatic speech recognition to deal with different
speaking speeds. It allows non-linear alignment to find
the optimal warping path between two sequences with
the minimum cumulative distance. To penalize the phase
difference between aligned points, we add a weight in
the calculation of DTW distance. We propose an arrival
pattern clustering framework that contains three steps: data
smoothing, distance computation and clustering. We first
use smoothing kernels to estimate the arrival rates for
different stations on all the days. A proposed distance
measure which combines the information for different days
of the week is then utilized to calculate pairwise distance
between stations. Hierarchical clustering is further applied
for the construction of clusters.

The remainder of this article is organized as follows.
Section II gives detailed explanation of the proposed
framework for clustering subway demand patterns. In
section III, we discuss our results of the proposed method
on real-world data. Section IV summarizes the article with
potential future directions.

II. METHODOLOGY

A. Data Smoothing

In real applications, the sampling frequency of smart
card transaction data is often high, e.g., every one-minute,
which causes fluctuations in the curve. Figure 1 shows
an example of the entry rate collected at one station
during one day. The number of passengers was counted
separately in each one minute. Thus, there are totally 1440
sample points within one day. The long sequence of time
series data along with extensive fluctuations will increase
the computation load and meanwhile reduce clustering
accuracy, which calls for a need to improve smoothness
of raw data at the preprocessing stage.

In order to reduce the length of sequence, we first
apply a resampling method. Figure 2a gives an illustration
of resampling at the interval of 15 min. After resampling,
only 96 sampling points remain in a single day. For data
smoothing, we apply the classic nonparametric approach
based on smoothing kernels. Let x(t) denote the resampled
passenger entry count at each time point t, and y(t) denote

(a) Resampled data (b) Smoothed data

Fig. 2. Example of data smoothing.

the curve after smoothing. The smoothed curve for station
i on day j is estimated in the following form:

yij(tk) =

∑nij

l=1K(
tk−tl

b )xij(tl)∑nij

l=1K(
tk−tl

b )
, (1)

where nij is the length of the sequence xij . K(·) is the
kernel smoother function and b is the kernel bandwith
which controls the length scale of the smoothing window.
Here we apply Gaussian kernel smoother for this approach

K(t) = exp(−t2/2). (2)

Figure 2b draws the entry rate data after proprecessing,
it can be shown that the curve is quite smooth and
interpretable and the time-variant information is largely
retained.

B. Weighted Dynamic Time Warping

In this section, we discuss how to calculate the dis-
tance between each pair of stations based on a weighted
dynamic time warping (WDTW) approach. We start from
the classic dynamic time warping (DTW). DTW is a
popular shape-based similarity measure for time series
data which breaks the limitation of one-to-one alignment.
Also, it allows unequal length of sequences for distance
calculation. The idea of DTW is as follows. Assume
s1 = (u1, u2, . . . , um) is a sequence of length m and
s2 = (v1, v2, . . . , vn) is a sequence of length n, the
pairwise distance between ui and vj is first computed and
stored in a m×n matrix. The best warping path is found to
be the one with the lowest distance path after the alignment
of one sequence to the other subject to the constraints:
(a) Endpoint constraint (b) Continuity constraint (c) Step
size constraint [13]. The optimal alignment is calculated
recursively based on the cost distance function:

D(i, j) = d(i, j) + min(D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)).

(3)
where d(i, j) = |ui − vj |. The DTW distance is then
defined as:

DTW (s1, s2) = min
p∈P

√√√√ K∑
k=1

d(pk), (4)

where P is the set of all possible warping paths, pk is the
position (i, j) at kth observation of a warping path, and
K is the length of the warping path [14].
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The standard DTW calcuates the distance of all points
without considering the influence of phase difference.
DTW may choose to make alignment which covers a
large temporal range to obtain the minimum distance.
However, in real application, the distance measure needs to
balance between shape matching and temporal alignment.
For example, in the analysis of subway entry rate curves,
phase difference indeed matters, as it is inappropriate to
match the point in the morning to the one in the afternoon
when phase difference is large. Therefore, we first apply
a modified distance function by a weight similar to [15]
when creating the m×n matrix. Let wp(|i−j|) denote the
postive weight value between the two points ui and vj , the
weight value is calculated based on the phase difference
|i−j|. In other words, smaller weights should be imposed
for nearer point pairs. For generalization, when it comes
to the case of unequal sampling intervals or discontinuous
sampling points, using time point index directly is not
a proper choise. Thus, we modify the notation of phase
difference to |ti − tj |, which computes the elapsed time
between the points in difference time series. Finally, the
distance between paired points is

dw(i, j) = wp(|ti−tj |)d(i, j) = wp(|ti, tj |)|ui−vj |. (5)

Therefore, the weighted DTW distance between two time
series sequences is

WDTW (s1, s2) = min
p∈P

√√√√ K∑
k=1

dw(pk). (6)

Here we apply the logistic weight function which is
defined as

wp(x) =
wmax

1 + exp(−α(x− β))
, (7)

where wmax is the upper bound of the weight function. α
controls the slope of the function, β is the midpoint of the
sequence which will give weight 0.5 when wmax is 1.

Figure 3 shows the behavior of the weight curve when
choosing different α. In accordance with the previous
examples, the length of each time series is 96. Then |ti−tj |
takes value in the range [0, 96]. β here is fixed to be 48,
which is the midpoint of the phase difference sequence.
It should be noted that other β values are also applicable
in order to change the center point of symmetry. wmax

here equals 1 for simplicity. It is shown that all the curves
are symmetric around the midpoint β. When α = 0, the
weight function reaches a constant value. When α = 0.05,
the curve is approximately linear with respect to the phase
difference. When α is set to a large value, 1 for example,
the middle part becomes quite steep, resulting in two
distinct weight values separated by the midpoint.

C. Distance Measure Based on Weighted DTW

For public transportation, the entry rate is often pe-
riodic at the interval of seven days (one week). This
can be explained by intuition that people live in similar
patterns every week, e.g., go to company on weekdays

Fig. 3. Weight function for different values of α

and go shopping at weekends. Also, a subway station
may be crowded at peak hours on weekdays but relatively
lonesome at weekends. Thus, to look at the data at different
days independently is not the best way to capture the
features of arrival patterns for different stations.

Thus, we assume the daily distances computed in
each week are identically and independently distributed.
We can first separate the collected data on the weekly
basis. For station i, let Yi = {yi1, yi2, . . . } denote the
data collected at different date. To introduce the idea
of week in the notation, we revise the elements of
Yi to be yiwd which represents the curve collected at
the wth week and dth day of the week. Thus, Yi =
{yi11, yi12, . . . , yi1nd

, . . . , yinw1, yinw1, . . . , yinwnd
},

where nw denotes the number of total weeks of the
collected data and nd = 7 is the number of days within
one week. The distance measure initially computes
WDTW on each date respectively and then averages on
the week level to obtain the summarized distance value
for each day of the week. The summarized distance
between station i and station i′ on day d of the week is

Dd(i, i
′, d) =

1

nw

nw∑
w=1

WDTW (yiwd, yi′wd), (8)

d ∈ {1, 2, . . . , 7}, which means the rolled sequence of
{Monday, Tuesday,. . . ,Sunday}.

Finally, the station level distance is calculated with the
2-norm of the distance of all the days inside the week. Let
Ds(i, i

′) denote the station level distance between station
i and station i′.

Ds(i, i
′) =

√√√√ 7∑
d=1

Dd(i, i′, d)2. (9)

Here we simply assume equal weights for each day of the
week. Alternatively, different weights can be applied, for
example, for weekdays and weekends. Similarly, we can
look at the behavior of stations on weekdays or weekends
separately. For the weekday distance measure, the station
level distance measure (9) can be modified to calculate
the 2-norm of Dd(i, i

′, ·) with five days from Monday to
Friday in d.
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D. Hierarchical Clustering

In this section, we use hierarchical clustering for the
clustering task. This method builds the hierarchy from
the individual elements by progressively merging clusters
based on the distance measure. Distances between sets
of objects are updates with linkage criterion [16]. For
pairwise distance stored in a matrix, rows and columns
are merged as the clusters grow and the distances update.
The application of hierarchical clustering does not need the
prior knowledge of number of clusters. Also, it avoids the
calculation of centroid of each cluster which is hard and
time-consuming to be accurate when applying methods
like k-means.

For each cluster, we find the medoid to represent the
main features of the whole cluster. Assume there are N
members inside cluster c, the medoid of cluster c is find
to be

M(c) = argmin
i

∑
i6=j

Ds(c(i), c(j)), i = 1, . . . , N. (10)

III. EXPERIMENTS

A. Data Description

The dataset we use for analysis was published by
Bostons Massachusetts Bay Transit Authority (MBTA)
who operates the 4th busiest subway system in the U.S.
after New York, Washington, and Chicago. The dataset
contains passenger entry rate (per-minute count) at 63
stations along the red, orange, and blue line of the Boston’s
subway system, based on records from turnstiles for pay-
ment, for totally 30 days in 2014. For the benefit of weekly
analysis, we select 28 consecutive days (four weeks) of
data for our experiments, range from 2 Feb to 1 Mar. For
raw analysis, we first use the smoothing kernels in Section
II-A to estimate the entry rate function for every station
everyday. After the processing, the smoothed sequence
has 96 points with time interval 15 min, from 0AM in
to 0AM+ on the next day. In this study, we assume the
entry rate follows similar patterns every seven days. Figure
4 shows the smoothed entry rate curves of the station
Alewife on four Wednesdays in February. It is shown that
the entry rate functions share similar shape with a high
peak in the morning and a small peak in the evening. This
validates our assumption to treat the data in a periodic
way.

B. Results & Discussion

In this section, we present the clustering results of
the stations based on the entry rate data of 28 days.
Before the computation of distance measure, we first
apply Z-normalization to the smoothed curve to eliminate
to influence of scaling. The procedure ensures that all
elements of the input are transformed so that the mean is
approximately 0 while the standard deviation is in a range
close to 1. This can be simply done by first subtracting the
time series mean from original values and then dividing
the results by the standard deviation.

(a) 2014-02-05 (b) 2014-02-12

(c) 2014-02-19 (d) 2014-02-26

Fig. 4. Entry rates of station Alewife on Wednesdays.

In our experiment, we set the parameters α = 0.1
and β = 48 for the distance measure. To better visualize
results, we perform clustering on weekdays and weekends
separately based on the modified distance measure of (9).
The clustering results for weekdays are shown in Figure 5.
The curves plotted here are from data collected on the first
Wednesday (2014-02-07). The red curve represents the
medoid found by (10) of each cluster. Stations in cluster 1
have morning peaks, roughly from 6AM to 8AM. Cluster
2 shows a two-peak pattern, in both morning and evening
(peaking at aroung 5:30PM). cluster 3 shows one obvious
evening peak, nearly symmetric with the pattern in cluster
1. Obviously, there exists deformations of peaks in each
cluster, which shows the advantage of DTW. The shift can
be explained by different distances from the station to the
destinations, which require different department time in
order to arrive on time.

Figure 6 shows the clusters generated with data on
weekends. We draw the curves on the first Saturday (2014-
02-08) of all the stations in two clusters. Most of the
stations belong to the second cluster, which shows a
concave pattern with a relatively flat part in the middle
(during daytime). This is because passengers are generally
free at weekends and the departure time is no longer
limited. Small fluctuations are also seen in the curves,
which is caused by unpredictable behavior of passengers.
Cluster 1 for weekends shows an interesting pattern, with
peaks both in the evening and at midnight. Stations in
this cluster are probably near entertainment venues like
theaters and clubs.

In combination of both clusters generated from week-
day and weekend entry rate curves, we have totally four
clusters. If we denote the stations in weekday cluster i
and weekend cluster j using a bracket as cluster (i, j),
the combined clusters are (1,2), (2,2), (3,1), (3,2). It is
noted that all stations in cluster 1 and 2 for weekday
analysis belong to weekend cluster 2. This joint pattern
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

Fig. 5. Clusters generated with data on weekdays.

(a) Cluster 1 (b) Cluster 2

Fig. 6. Clusters generated with data on weekends.

reveals that stations in cluster (1,2) are near residential
areas where people go out for work on weekday mornings
and enjoy leisure time on weekends. Similarly, cluster (2,2)
represents multifunctional areas which provide both living
and working functions in the district. Also, all the stations
who have late night peaks on weekends as cluster 1 are all
rested in weekday cluster 3. This is in accordance with our
analysis of weekend clusters from Figure 6. Cluster (3,2)
gives a typical example of central business distinct where
people leave after work in the evenings on weekdays. To
this end, we manage to separate the stations into clusters
that are easy to interpret while eliminating the influence
of horizontal shift of the curves.

IV. CONCLUSION

In this study, we analyze the pattern of subway
ridership via a clustering method. WDTW is applied
to eliminate the influence of the curve deformations.
Influence of day of the week is considered during the
analysis. Experiments show that the clustering results
are meaningful and interpretable. For further studies, the
combination of clustering results and network information
will help analyze the interactions and connections among
stations inside a transportation system. Also, the cluster
information can be possibly incorporated with prediction
models for more accurate passenger flow forecasting and
better travel demand management.
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