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ABSTRACT
This article presents a Gaussian process (GP)-based approach to model a tunnel’s inner surface profile with
high frequency sensing data provided by a Terrestrial Laser Scanner (TLS). We introduce a reading-surface
profile that uniquely determines a three-dimensional tunnel in a Cartesian coordinate system. This reading-
surface transforms the cylindrical tunnel to a two-dimensional surface profile, hence allowing us to model
the tunnel profile by GP. To account for coordinate errors induced by TLS, we take repeated measurements
at designed coordinates. We apply a Taylor approximation to extract mean and gradient estimations from
the repeatedmeasurements and thenfit theGPmodelwith both estimations to obtain amore robust recon-
struction of the tunnel profile. We validate ourmethod through numerical examples. The simulation results
show that with the help of derivative estimations, our method outperforms the conventional GP regression
with noisy observations in terms of mean-squared prediction error. We also present a case study to demon-
strate that our method provides a more accurate result than the existing cylinder-fitting approach and has
great potential for deformation monitoring in the presence of coordinate errors.

1. Introduction

Tunnel deformation is a major safety concern in underground
construction projects. Minor tunnel deformations can cause
shrinkage of the tunnel geometry. The shrinkage in its early
stage is usually so gradual that only very small, almost unob-
servable, changes occur to the smooth surface of a tunnel.
However, once it becomes more severe and abrupt, it can cause
catastrophic rockfalls, endangering any workers inside the
tunnel. Therefore, detecting tunnel deformations as early as
possible is critical throughout the lifetime of a tunnel, especially
during the construction period. This is the motivation of our
research. To have accurate monitoring and efficient detection,
we need first to have precise modeling for the tunnel profile;
which is the focus of this article.

Recently, the Terrestrial Laser Scanner (TLS) technique
has been applied to measure a tunnel’s profile; see Monserrat
and Crosetto (2008); Fekete et al. (2010); Han et al. (2013) for
examples. TheTLS technique is able to provide large-scale, high-
resolution measurements in a short amount of time. In contrast
with conventional point survey approaches, the TLS method
can fully characterize the entire tunnel surface by providing
three-dimensional point cloud data. To filter out measurement
noise and fully utilize the point cloud data provided by the TLS
method, computational approaches, such as cylinder-fitting
(Van Gosliga et al., 2006) or elliptical-fitting (Walton et al.,
2014), have been introduced to reconstruct the tunnel as a
continuous surface profile. Based on the fitted model, subse-
quent statistical analysis (Van Gosliga et al. 2006) or sensitivity
tests (Delaloye et al., 2015) for deformation detection can be
conducted.

CONTACT Nan Chen isecn@nus.edu.sg
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uiie.

Despite the significance of filtering the measurement noise,
current cylindrical-fitting approaches have some limitations. In
practice, the tunnel surfaces are barely in perfect cylindrical
geometry. For instance, Figure 1 shows a piece of tunnel seg-
ment and the corresponding cylinder model fitted using point
cloud measurements. As we can observe from Figure 1(a), the
tunnel surface can be rather complex, and from Figure 1(b)
the parametric cylinder model lacks sufficient flexibility to
capture local variations in the surface. Unfortunately, as this
local variability contains information about minor deforma-
tions, these methods will fail to detect these deformations in
the early stage. In this regard, a more flexible and accurate
model is preferable. Moreover, tunnel profiles usually have
spatial correlations, which are caused by the similar process
conditions of adjacent points. For example, in the formwork
removal of the lining process, the spatial correlations of the
formwork profiles create spatial correlations in the tunnel pro-
files. Actually, in addition to these spatial correlations intro-
duced by construction, a nonuniform rock density naturally
leads adjacent places to experience similar conditions and be
spatially correlated (Li et al., 2011). As a result, it is important
to account for the spatial structure to improve the accuracy of a
model.

Considering the challenges and features of modeling a tun-
nel’s profile, the Gaussian Process (GP) is a promising model.
First, it has been used to model complex profiles in a wide
range of applications, including design and analysis of com-
puter experiments (Santner et al., 2003), simulation modeling
(Ankenman et al., 2010), and optimization (Huang et al., 2006).
In addition, it is particularly useful in the modeling of spatially
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Figure . Comparison between the original and fitted profiles: (a) the original tunnel and (b) the fitted cylinder model.

correlated data, due to the nature of the GP’s working principles.
In fact, the GP has been used to model other surface profiles
resulting from a material removal process, such as a silicon
wafer’s surface profile in semiconductor manufacturing (Jin
et al., 2012; Plumlee et al., 2013; Zhang et al., 2016). In terms
of modeling cylindrical profiles, Colosimo et al. (2014) demon-
strated an application where the GP was applied to reconstruct
a cylindrical surface based on grid sampling measurements.
Furthermore, Del Castillo et al. (2015) proposed a geodesic
GP model to reconstruct free-form surfaces by transforming
Cartesian coordinates intomachined surface coordinates. These
studies demonstrate the key advantage of the GP: it is flexible
enough to be able to distinguish the actual feature (or equiva-
lently the local variability) from the designed perfect cylinder.
This advantage allows subsequent analyses, such as form error
assessment (Xia et al., 2008) and surface monitoring (Colosimo
et al., 2014), which are extremely useful in the detection of
tunnel deformations.

In practice, however, the applicability of GPmodeling is chal-
lenging, as the data obtained using the TLS technique are often
contaminated with noise or errors, as discussed in Reshetyuk
(2006). There are two main sources of errors encountered dur-
ing TLS sensing: range error and angular error. The range error
is also referred to asmeasurement noise, which can be accounted
for by either tuning the instrument’s precision level or statis-
tical approaches based on repeated measurements. The angu-
lar error, however, has received much less attention. In more

detail, define X c as a point on the tunnel’s surface in a Carte-
sian coordinate system. The TLS measurement system is actu-
ally a spherical coordinate system. It includes the distance ofX c

from the origin (i.e., the position of the scanner), ρ, and two
angles. The first is the azimuthal angle ϕ in the radial perspec-
tive; i.e., the angle between X c and the x–y plane. The second
is the elevation angle θ in the axial perspective; i.e., the angle
between X c and the x–z plane, as demonstrated in Figure 2(a).
During the TLS survey, the measurements usually cannot be
taken exactly at designed coordinates, due to machine and
environmental factors, such as tolerances of the rotation joints
(Marshall and Stutz, 2011) or tunnel boring machine (TBM)
vibration (Reshetyuk, 2006). These angular errors (�ϕ,�θ in
Fig. 2(b) and Fig. 2(c)) are often unobservable, yet have a
tremendous impact on the modeling accuracy of a tunnel’s
profile.

To demonstrate the impact of such angular errors, which we
refer to as coordinate errors hereafter, we use a one-dimensional
example shown in Figure 3(a) for illustration.We intend tomea-
sure the height y = f (x)marked by the star at the designed loca-
tion x. However, the real measurement shifts to x + �x. As �x
is unobservable, we record the actual measurement f (x + �x)
marked by the circle as if it is still measured at our designed loca-
tion x, which results in the recorded valuemarked by the square.
If we use error-contaminatedmeasurements

〈
xi, f (xi + �xi)

〉
to

predict the profile, aswe can observe in Figure 3(b), there is a sig-
nificant bias between the predicted profile and the true profile.

Figure . Demonstration of the TLS coordinate errors: (a) is the three-dimensional plot where X c is a point on the surface in the Cartesian coordinate system. ρ is the
distance of X c from the original point (i.e., the position of the scanner). ϕ is the azimuthal angle of X c in the radial perspective; i.e., the angle between X c and the x–y
plane. θ is the elevation angle ofX c in the axial perspective; i.e., the angle betweenX c and the x–z plane. Consequently,X c = ρ × [cosθcosϕ, sinθ, cosθsinϕ]T . In (b),
the red line is the projection ofX c on the x–z plane, and the angle�ϕ demonstrates the azimuthal error. In (c), the red line is the projection ofX c on the y–z plane, and
the angle�θ demonstrates the elevation error.
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Figure . Measurement and regression in the presence of coordinate errors: (a) how we observe the measurements and (b) prediction with error-contaminated
measurements.

Therefore, it is of great importance to account for the coordinate
errors in the GP model to obtain a robust prediction. In the
literature on regression, this problem is also acknowledged as
Berkson’s Error-In-Variable (EIV) problem (Berkson, 1950).
Although inferences on Berkson errors in linear models have
been thoroughly discussed in the literature (Van Gosliga et al.,
2006; Fuller, 2009), for nonlinear models, the inferences are few.
Most of these inferences use the conditional moments of the
responses given the observed predictors to identify the regres-
sion coefficients and the input error distribution. Examples
include the regression calibrationmethod of Carroll et al. (2006)
for generalized linear regressions, the iterative re-weighted least
squares approach of Huwang and Huang (2000) for polynomial
regressions, the quasi-likelihood estimation method of Carroll
and Stefanski (1990) for general input errors, and the minimum
distance estimator of Wang (2004) for general nonlinear regres-
sions. However, unless the nonlinear regressions have simple
forms, inmany cases, such as the GP, their conditional moments
have no analytical solution. Then the above methods require
significant computational effort to calculate eithermultiple inte-
grals or to estimate moments by simulation. This hinders their
efficient applications in the GP, especially for high-dimensional
cases with a lot of sampling points. As for EIV models partic-
ularly designed for GP regressions, unfortunately so far all of
them focus on classic input errors. For example, Goldberg et al.
(1997), Kersting et al. (2007), and Titsias and Lázaro-gredilla
(2011) proposed the use of a heteroscedastic GP for approxima-
tion. They suggested using a Taylor expansion to approximate
the GP around xi and derived a correction for the prediction
proportional to the gradient of the GP. However, since the
Berkson error is fundamentally different from classic errors and
requires completely different procedures in parameter estima-
tion and inference, the above methods cannot be applied to this
situation.

To fill in the research gap in modeling tunnel profiles, we
propose a GP with error adjustments to model complex tunnel
profiles in the presence of coordinate errors. Our contributions
are twofold. First, we apply the GP to tunnel profile modeling.
The key to its implementation is to obtain an accurate GPmodel
representation. Compared with other existing methods in the
literature, the proposed GP has more flexibility to describe local

variability and the spatial correlation structure of the tunnel
surface. Consequently, the GP can capture gradual minor defor-
mations more efficiently in their early stages. Furthermore, our
method is easy to generalize and implement in other types of
engineering surfaces. That is of interest itself. Second, we con-
sider modeling the profile in the presence of coordinate errors.
In particular, we propose a new method to deal with error
contamination. The key process is to treat coordinate errors
as additional information, with the help of which the gradient
of the GP can be closely estimated. Then we can incorporate
the gradient information into the profile modeling to provide a
more accurate approximation. Actually, the GP has the unique
advantage including gradients into the estimation, which can
be conveniently achieved by the direct gradient-enhanced GP
(Chung and Alonso, 2002; Zimmermann, 2013; Ulaganathan
et al., 2016). However, the traditional gradient-enhanced GP
in the literature supposes that gradient information is known
in advance from finite-difference methods or adjoint-based
methods (Chung and Alonso, 2002; Dwight and Han, 2009).
Unfortunately, in our case, gradient information is unknown
and has to be inferred. With this in mind, we propose an iter-
ative algorithm that allows us to simultaneously learn gradient
information together with the GP. After convergence of the
algorithm, the information on coordinate errors is added to
the GPmodel. Consequently, the information loss caused by the
error is mitigated. The numerical results show that the predic-
tion of the proposedGP is robust against coordinate errors and is
more accurate than existing approaches. Based on the proposed
model, some potential monitoring schemes can be developed
in future. Our model hopes to shed light upon this research
field.

The remainder of this article is organized as follows. Section 2
introduces the reading-surface, based onwhich a general frame-
work of modeling a tunnel’s profile using the GP is presented.
Section 3 discusses a modified GP model for robust prediction
with error-adjusted estimation to account for coordinate errors.
Section 4 validates our model through simulation studies
and applies our method in a real case study to demonstrate
the effectiveness and applicability of our method. Finally,
Section 5 concludes this study and discusses future research
directions.
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2. GPmodel for a tunnel’s profile

2.1. Reading-surface profile

Objects on a tunnel’s surface are measured by TLS. The scanner
is set up at the central axis of the tunnel via a preliminary
registration procedure. The measurements are recorded in a
spherical coordinate system. This coordinate system is demon-
strated in Figure 2. Specifically, we let X ≡ [ρ, ϕ, θ]T denote
a three-dimensional point on the tunnel’s surface in the spher-
ical coordinate system, where ρ is the reading of the distance
measurement from the scanner to the tunnel surface, ϕ is the
azimuthal angle in radial perspective, and θ is the elevation
angle in the axial perspective.

In TLS scanning, ϕ and θ are controllable variables that are
inputted to the scanning system. The scanner then rotates as
instructed to position [ϕ, θ]T, takes measurements, and records
the distance readings. In this context, we define a function
ρ = f (x) : R2 �→ R that maps the measurement coordinates
x ≡ [ϕ, θ]T to the distance reading ρ. This function is demon-
strated as a surface profile in Figure 4(a). We name such an
f (x) as a reading-surface. Each reading–surface uniquely
determines a three-dimensional tunnel profile in the Cartesian
coordinate system through simple coordinate transformation.
Let X c = ρ × [cos θ cosϕ, sin θ, cos θ sinϕ]T denote a point
on the surface in the Cartesian coordinate system. Figure 4(b)
shows the transformed three-dimensional tunnel profile. Con-
sequently, modeling the tunnel profile is equivalent to modeling
the reading-surface.

Remark 1. The above-described spherical coordinate system
is local to the scanner. When multiple scanners are used
collaboratively, we could transform the local coordinates to
global ones by simply lettingX g = p + R × X c, whereX g is the
point on the global surface, p is the position of the current scan-
ner, and R is a rotation matrix. For demonstration purposes, in
this study, we focus on modeling a tunnel segment with a single
scanner.

2.2. GPmodel

We propose the following GP model representation to approx-
imate the reading-surface. Similar to the treatment of Xia et al.
(2008), we decompose the reading-surface into two parts:

f (x) = r(x) + z(x), (1)

where r(x) is the designed profile, and z(x) denotes the local
variability of the tunnel’s surface from the standard cylin-
drical shape due to deformation. Intuitively, r(x) represents
the desired reading-surface in the perfect scenario that the
tunnel has an exact cylindrical shape. Therefore, given the
designed tunnel radius α, r(x) only depends on θ as r(x) = α/

cos(θ ).
On the other hand, the local variability z(x) is usually

unknown and needs to be estimated from the measurements.
We assume z(x) is a realization of a GP with mean function
μ and covariance function k(·, ·). In particular, suppose that
we have collected n distance readings ρ ≡ [ρ1, ρ2, . . . , ρn]T
at corresponding coordinates X ≡ [x1, x2, . . . , xn]T. Based on
Equation (1), we assume ρ − r(X) follows amultivariate normal
distributionwith then-by-1mean vectorμ1n andn-by-n covari-
ance matrix �0, whose ijth element is defined as k(xi, x j); that
is,

ρ − r(X)|X ∼ N (μ1n,�0). (2)

To describe the spatial correlation between points on the
tunnel’s surface, we assume that the covariance between two
arbitrary points X ,X ′ on the tunnel’s surface fully depends
on the Euclidean distance d of x and x′. With this in mind,
we further decompose this distance d into two orthogonal
projections as shown in Figure 5.

� In the radial perspective (Fig. 5(a)), the distance projected
on the x-axis can be expressed as dx = |ρ cos θ cosϕ −
ρ ′ cos θ ′ cosϕ′|, whereas the one projected on the z-axis
is dz = |ρ cos θ sinϕ − ρ ′ cos θ ′ sinϕ′|. As ρ and ρ ′ are
unknown until we take measurements, we could use their
designed values r(θ ), r(θ ′) instead. Hence, we obtain:

dx = |α cosϕ − α cosϕ′|, (3)
dz = |α sinϕ − α sinϕ′|. (4)

� In axial perspective (Fig. 5(b)), similarly we could obtain
the projected distance:

dy = |α tan θ − α tan θ ′|. (5)

Then we can design k(x, x′) as a function of dx, dy, and
dz. Generally for GP modeling, k(x, x′) is assumed to have a
parametric form, such as the power exponential, the rational

Figure . Example of the reading-surface transformation: (a) a reading-surface profile and (b) the corresponding tunnel profile.
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Figure . Projected distance between two points on the tunnel surface: (a) from the radial perspective and (b) from the axial perspective.

quadratic, or the Matérn family. Here we assume that the tun-
nel’s profile is smooth and continuous and propose to use the
Gaussian correlation function in the analysis. The Gaussian cor-
relation function also has the good property that any arbitrary
smooth function can be constructed as a regression model with
the Gaussian covariance functions (MacKay, 1998). Of course,
when the smoothness assumption is not satisfied, other types
of correlation functions with more flexibility can be applied
in our model, which is further discussed in Remark 3. To
represent anisotropic spatial correlation effects, we assign three
length-scale parameters lx, ly, and lz to the projected distances,
respectively.Hence, the covariance betweenX andX ′ becomes

k(x, x′) = σ 2
f exp

[−(dx/lx)2 − (dy/ly)2 − (dz/lz)2
]
, (6)

where σ 2
f is the overall surface variance. Other than the

Euclidean distance, the geodesic distance suggested by Del
Castillo et al. (2015) is another alternative to use in the covari-
ance function.

Now the GP model has five parameters. Specifically, we let
� ≡ [μ, σ 2

f , lx, ly, lz]
T denote the entire parameter set.When�

is unknown, it can be estimated from the measurements 〈ρ,X〉
by maximizing the log-likelihood function (up to a constant)

�̂ = argmax
�

(
−1
2
log |�0| − 1

2
eT�−1

0 e
)

, (7)

where e = ρ − μ1n − r(X). The optimization problem in
Equation (7) can be solved numerically. Please refer toAppendix
A-I for more technical details.

Given� (or estimated from historical data), and conditional
onX and ρ, the reading-surface f (x∗) at any unmeasured coor-
dinates x∗ will still follow a normal distribution and can be pre-
dicted as

E[ f (x∗)|X, ρ] = μ + r(x∗) + �∗,0�
−1
0 e, (8)

V[ f (x∗)|X, ρ] = �∗ − �∗,0�
−1
0 �T

∗,0, (9)

where �∗ = k(x∗, x∗) is the variance at point x∗, and �∗,0 is
a 1-by-n vector consisting of k(x∗, xi) for each element xi, i =
1, 2, . . . , n in X. Equation (8) provides a prediction of the
reading-surface at any location, whereas Equation (9) quantifies
the prediction uncertainty. Using this prediction, we can obtain
the entire reading-surface, which can be transformed to the tun-
nel profile.

In summary, the GP modeling framework adapts a measure-
a-few-and-predict-the-rest work flow. It can efficiently produce
a continuous representation of the whole tunnel surface while
still being flexible and able to accurately capture the local
variability.

Remark 2. By using Equation (1), we assume that the scanner’s
reading is accurate. In practice, however, measurement noise
may exist. It has been reported in the literature that measure-
ment noise depends on the incident angle θ (Reshetyuk, 2006;
Delaloye et al., 2011). When measurement noise is present, we
can fit the GP model with noisy observations (Rasmussen and
Williams, 2006) by simply substituting �0 by �0 + �0, where
�0 is a diagonal matrix containing the noise variance. On the
other hand, as the noise depends on incident angle, empirically
we could control θ to be in the range [−0.45, 0.45] (in radi-
ans). Under this condition the noise becomes negligible com-
pared with other variables.

3. Estimation with coordinate errors

In Section 2.1, we introduced the two controlled variables in the
TLS technique: ϕ and θ . In practice, measurements are not usu-
ally taken at the exact designated locations [ϕ, θ]T. Instead, the
measurement position may shift to [ϕ + �ϕ, θ + �θ]T due to
equipment vibration, as demonstrated in Figure 2. Here�ϕ,�θ

are random and unobservable. Without much prior informa-
tion, we treat them as Gaussian noise; i.e., �x ≡ [�ϕ,�θ]T ∼
N (0,��). The scale of �� is usually estimated during instru-
ment calibration.

When �x is present, the TLS reading will be contaminated,
as ρ̃ = f (x + �x) instead of f (x). Since �x is random and
unknown, it becomes challenging to estimate f (·) using con-
taminated observations 〈x, ρ̃〉. Fortunately, due to the fast sens-
ing capability of TLS, we can take multiple measurements at
each designed location. These “repeated”measurements provide
valuable and more accurate information on the f (·). To illus-
trate, we use a one-dimensional example shown in Figure 6. In
Figure 6(a), we take multiple measurements at each designed
position xi:

ρ̃i j = f (xi + �xi j), j = 1, 2, . . . ,mi. (10)

However, as the �xi j are unknown, what we perceive
are a sequence of observation pairs 〈xi, ρ̃i j〉, i = 1, . . . , n,
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Figure . Repeated measurements scheme: (a) real measurements around designed coordinates marked by dashed lines and (b) received measurements as replications
at designed coordinates.

j = 1, . . . ,mi as demonstrated in Figure 6(b). In other words,
the multiple measurements taken at a single designed position
are perceived as “repeated” measurements, even if they are actu-
ally taken at different positions. Even though we cannot obtain
the exact position xi + �xi j, these “repeated” measurements
are still informative. The simplest revision is to take the average
of the repeat samples,

∑mi
j=1 ρ̃i j/mi, and use it to closely approx-

imate the function value at xi. This method can reduce the
estimation standard deviation by a factor of

√
n (Ramoni and

Anagnostou, 2011). However, a cleverer method is to take the
variance of ρ̃i j into account as well, since it provides important
information on the derivatives of f (·) at location xi. As clearly
demonstrated in Figure 6(b), at the location where the curve
has a larger derivative, the variance of ρ̃i j is also larger. As a
result, we hope to utilize the information on the function value
and its gradient from the “repeated” measurements together, in
order to obtain a more accurate estimation of the tunnel profile.

Actually, the gradient-enhanced GP has been commonly
used to improve the estimation performance of a GP (Chung
and Alonso, 2002; Zimmermann, 2013; Ulaganathan et al.,
2016). However, the traditional gradient-enhanced GP mod-
els in the literature assume that information about the gra-
dient is known primarily from finite-difference methods or
adjoint-based methods (Chung and Alonso, 2002; Dwight and
Han, 2009), whereas in our case, the gradient information is
unknown. Therefore, the key procedure is to estimate the gradi-
ent from the repeated measurements, which will be introduced
later.

3.1. Estimating gradients from repeatedmeasurements

In this part, we provide technical details on how to derive
the gradient of f (·) at location xi based on the repeated
measurements.

Given that the tunnel profile f (·) is twice differentiable (see
Remark 3 for further discussion), we can apply a first-order
Taylor expansion f (xi + �xi) ≈ f (xi) + � f (xi)T�xi, where
� f (xi) = [∂ f (xi)/∂ϕi, ∂ f (xi)/∂θi]T are the derivatives of f (·)
with respect to ϕ and θ . As we assume�xi ∼ N (0,��), taking
expectation and variance with respect to �xi on both sides of
the Taylor approximation, we can obtain

E[ f (xi + �xi)] ≈ E
[
f (xi) + � f (xi)T�xi

] = f (xi), (11)

V[ f (xi + �xi)] ≈ V
[
f (xi) + � f (xi)T�xi

]
= � f (xi)T��� f (xi). (12)

According to Taylor’s theorem, the truncated approximation
error is E[�xTi H(ξ)�xi/2], where H(ξ) is the Hessian matrix
of f at ξ, and ξ is somewhere between xi and the realization
xi + �xi j. In other words, as long as the function f (·) is not
highly nonlinear and the �xi j are small, the first-order Taylor
approximation can provide satisfactory accuracy.

Therefore, we could use the sample statistics of the
“repeated”measurements to estimate f (xi) and� f (xi) based on
Equations (11) and (12). In particular, we denote the sample
meanMi and sample variance S2i from the “repeated” measure-
ments at location xi as

Mi =
mi∑
j=1

f (xi + �xi j)
mi

, (13)

S2i =
mi∑
j=1

[ f (xi + �xi j) − Mi]2

mi − 1
. (14)

As a result, a simple estimate of ρ̂i is Mi, with the estimation
variance σ 2

ρi
= S2i /mi.

The estimate of � f (xi) is more difficult to obtain from
Equation (12). Without loss of generality, we assume �ϕi and
�θi are independent, and σ 2

ϕ , σ 2
θ are the diagonal elements of

��. As a result, Equation (12) can be expressed as

V[ f (xi + �xi)] =
[
∂ f (xi)

∂ϕi

]2

σ 2
ϕ +

[
∂ f (xi)

∂θi

]2

σ 2
θ . (15)

Define the ratio

τi = ∂ f (xi)
∂θi

/
∂ f (xi)

∂ϕi

and we can obtain the gradient estimates∣∣∣∣∣∂ f̂ (xi)
∂ϕi

∣∣∣∣∣ = Si√
σ 2

ϕ + τ 2
i σ 2

θ

,

∣∣∣∣∣∂ f̂ (xi)
∂θi

∣∣∣∣∣ = τi

∣∣∣∣∣∂ f̂ (xi)
∂ϕi

∣∣∣∣∣ . (16)

In practice, τi and the signs of the partial derivatives are
unknown. To obtain a robust and accurate estimate, we adopt
an iterative approach, which will be described in detail at
the end of this section. The estimation variance based on
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Equation (16) can also be obtained as

V

[
∂ f̂ (xi)

∂ϕi

]
= V[Si]

σ 2
ϕ + τ 2

i σ 2
θ

= S2i (1 − c24)
σ 2

ϕ + τ 2
i σ 2

θ

,

V

[
∂ f̂ (xi)

∂θi

]
= τ 2

i V

[
∂ f̂ (xi)

∂ϕi

]
, (17)

where c4 is the unbiased correction constant for sample stan-
dard deviation. The expressions of c4 and V[S] are provided in
Appendix A-III.

3.2. GP predictionwith gradient information

Taking the information on both f̂ (xi) and� f̂ (xi) into account,
we can have a better estimation of the tunnel profile compared
with the GP of Equation (7), where only function values are
considered. We introduce the gradient-enhanced GP in detail
as below.

Specifically, letDϕ ≡ [∂ f (x1)/∂ϕ1, ∂ f (x2)/∂ϕ2, . . . , ∂ f (xn)/
∂ϕn]T and Dθ ≡ [∂ f (x1)/∂θ1, ∂ f (x2)/∂θ2, . . . , ∂ f (xn)/∂θn]T.
Subsequently, we denote ρA ≡ [ρ,Dϕ,Dθ ]T as the augmented
data that include both the function values and gradients at
all designed locations xi, i = 1, . . . , n. If f (x) follows a GP,
then the augmented data ρA also follow a multivariate normal
distribution (Santner et al., 2003; Chen et al., 2013), with a
3n-by-3n covariance matrix �A as demonstrated in Figure 7.
�A represents the covariance within augmented data ρA based
on the GP structure. When ρA are not directly observable but
estimated from data as ρ̂A, the estimation variance can also be
considered, denoted by �A in Figure 7. �A essentially accounts
for the estimation error of ρ̂A based on Equations (13) and
(16). The augmented GP can be estimated by maximizing the
log-likelihood function, following the same method as the GP
in Section 2.2. Please refer to Appendix A-II for more technical
details.

With the estimated GP, by plugging ρ̂A, �A, �A into
Equations (8) and (9), we can obtain the prediction for the entire
tunnel profile at any given location x∗ as

E[ f (x∗)|X, ρ̂A] = μ + r(x∗) + �∗,A(�A + �A)−1eA,

V[ f (x∗)|X, ρ̂A] = �∗ − �∗,A(�A + �A)−1�T
∗,A, (18)

where eA = ρ̂A − μ1An − rA(X) and where μ1An ≡ [μ1n, 02n]T,
rA(X) ≡ [r(X), 02n]T, and �∗,A is the augmented covariance
between f (x∗) and ρA. Equation (18) hence provides a contin-
uous prediction to f (·) with quantified prediction uncertainty.

It should be noted that sometimes the measurement system
may suffer from output noise. In these cases, many gradient
estimation methods will be dramatically infected by the output

noise, such as the finite-difference estimation. Fortunately, our
method is still effective in these cases. This is due to our gra-
dient estimation being based on the Taylor expansion of the GP.
Our estimation only uses themoment information of coordinate
errors but does not use the repeat samples to directly calculate
gradients. Therefore, our method does not have this problem.

3.3. Implementation procedure

In short, the complete procedure of estimating a two-
dimensional tunnel surface profile based on data with coordi-
nate error is now summarized.

We first fit an initial GP model solely using data 〈xi,Mi〉, i =
1, . . . , n. Such an initial GP model is also referred to as GP with
noisy observations in the literature (Rasmussen and Williams,
2006). Based on the initial GP model, we obtain estimates of
all τi, as well as the directions of the partial derivatives. Then
we update the gradient estimates based on Equation (16) and
update the GP model with better accuracy. We repeat the above
procedures to iteratively refine the estimates of τi and� f (xi) for
further improvement. An algorithmic sketch of the procedure is
shown in Algorithm 1.

Remark 3. It should be noted that when the profile to be
modeled is not sufficiently smooth or continuous to allow the
Gaussian correlation function assumption to be satisfied, we
may use other types of correlation functions. However, the cor-
relation functionmust be at least twice differentiable to calculate
the correlations between the gradient observations. Due to this
restriction, we limit our scope to stationary correlation func-
tions, such as theMatérn family functions. Tomake the GP path
twice differentiable, the degree parameter v of theMatérn corre-
lation functions should be bigger than two (recently Lockwood
andAnitescu (2012) showed that v = 1.5 is also applicable in the
gradient-enhanced GP). A detailed discussion on various dif-
ferentiable correlation functions is given by Näther and Šimák
(2003) and Stein (2012). It should be noted that no matter what
available correlation function is used in our model, the model-
ing framework and estimation procedure of Algorithm 1 can be
applied with trivial modifications. In particular, we only need to
change the first-order and second-order derivatives of k(x, x′)
based on the chosen correlation function. For the Matérn cor-
relation functions, these are discussed in detail in Ulaganathan
et al. (2016).

4. Numerical study

In this section, we first use a one-dimensional numerical exam-
ple to demonstrate the proposed model. We then present a case

Figure . Covariance structure of the GP with estimated function and gradient values.
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Algorithm 1 Fit GP with error-adjusted estimation.
Data: Observations xi, f (xi + �xi j), i = 1, . . . , n; j = 1, . . . ,mi
Result: GP model with estimated parameters � = {μ, σ 2

f , lx, ly, lz} for the tunnel profile

1: Initialize: Set k = 0; Estimate the mean ρ̂ = [M1, . . . ,Mn] and fit the initial GP f (k)(·;�(k)) based ondata 〈xi, ρ̂i〉 using the
maximum likelihood method of (A.2) and (A.3).

2: Set k = k + 1, and calculate τ
(k)
i = ∂ f (k−1)(xi )

∂θi
/

∂ f (k−1)(xi )
∂ϕi

. Then we get

∂ f̂ (xi)
∂θi

= sgn
(

∂ f (k−1)(xi)
∂θi

)
Si√

σ 2
ϕ + τ

(k)2
i σ 2

θ

,
∂ f̂ (xi)

∂ϕi
= τ

(k)
i

∣∣∣∣∣∂ f̂ (xi)
∂θi

∣∣∣∣∣ .
Then we have D(k)

ϕ ≡ [∂ f̂ (x1)/∂ϕ1, ∂ f̂ (x2)/∂ϕ2, . . . , ∂ f̂ (xn)/∂ϕn], D(k)
θ ≡ [∂ f̂ (x1)/∂θ1, , ∂ f̂ (x2)/∂θ2, . . . , ∂ f̂ (xn)/∂θn],

and the corresponding ρ̂
(k)
A ≡ [̂ρ,D(k)

ϕ ,D(k)
θ ].

3: Update the GP f (k)(·;�(k)) based on 〈xi, ρ̂(k)
A 〉 using (A.5) and (A.6).where ê = ρ̂ − μ̂(k)1n − r(X).

4: if τ (k)
i does not converge, go back to Step 2; otherwise, return f (k)(·;�(k)).

study in which we apply our method to model a tunnel segment
in the presence of coordinate errors.

4.1. Predicting the curve profile in the presence of
coordinate errors

We use the damped cosine function (Santner et al., 2003):

f (x) = exp(−1.4x) cos(3.5πx), x ∈ [0, 1] (19)

as the testing curve to represent the underlying profile to
be predicted. To predict this profile, we followed the pro-
cedure described in Section 3.3. First, we generated n = 6
points, xi(i = 1, . . . , 6) through Latin-hypercube design–i.e.,
x = [0.037, 0.312, 0.368, 0.653, 0.748, 0.935]T–as the designed
measurement coordinates. To simulate the coordinate error,
we let �x ∼ N (0, 0.02) and generated m = 20 samples for
each site xi, i = 1, . . . , 6. The measurements were then taken
at each xi + �xi but recorded as replications at each xi. Using
these measurements, we approximated f (xi) and the approxi-
mation errors σ 2

fi using Equations (13) and (14). Based on these
approximations, we fitted theGPmodelwith noisy observations,
and the initial prediction is shown in Figure 8(a). As the test-
ing function is one-dimensional, Equation (16) can be simpli-
fied to | f ′(xi)| = Si/σx with σx = 0.02 in this case. Similarly,
Equation (17) becomes V[ f ′(xi)] = S2i (1 − c24)/σ 2

x . Applying
the directions (positive or negative) extracted from Figure 8(a),
we obtained the estimations of derivative at each xi. These esti-
mations are illustrated in Figure 8(b). We then fitted the GP
model with the derivative estimations added. The adjusted pre-
diction is shown in Figure 8(c).

One may notice that by only using noisy observations, the
GP model is able to provide a moderate prediction as shown
in Figure 8(a). The difference in the models that affects the
prediction performance between Figure 8(a) and Figure 8(c) is
whether or not we incorporate derivative estimations. As we can
observe in Figure 8(c), the prediction approaches the true pro-
file more closely than its rival in Figure 8(a). More quantita-
tively, we can compare their prediction performances in terms
of Mean-Squared Prediction Error (MSPE) evaluated at 1000

equally spaced locations. The MSPE in Figure 8(a) is 17.52 ×
10−3, whereas in Figure 8(c) theMSPEdecreases to 1.25 × 10−3,
which indicates a more accurate prediction. Moreover, if we
compare the prediction uncertainty represented by the 95% con-
fidence interval band, the prediction in Figure 8(c) is obviously
preferable, as the interval band ismuch narrower. This compari-
son justifies the necessity of incorporating derivative estimations
in the GP model.

The above numerical result was obtained based on six
measurement sites and 20 replication at each. We further
studied how different sizes for the measurement sites affect
the prediction performance in terms of MSPE. We first fixed
the replication size m = 20 for every site and varied the size
of the measurement sites n from four to ten. We compared
the MSPEs of the GPs with (error adjustment) or without
(noisy observations only) derivative estimation. The results are
shown in Figure 9(a). We can clearly observe that both MSPEs
reduce as the size of the measurement sites increases. This is
intuitive, because we obtain more information on the profile
when measuring at more sites and thus the prediction tends to
be more accurate. In addition, we find that the prediction with
the derivative always has a smaller MSPE. This again proves the
significance of incorporating derivative estimations.

Second, we fixed the size of the measurement sites n = 8 and
varied the replication sizem from 5 to 30 for all sites. The com-
parison of the MSPE values is shown in Figure 9(b). We can
observe that the MSPE of the GP with the derivative slightly
decreases as the replication size increases. This is because more
replications can give a more accurate estimation on the deriva-
tives. However, we notice that both MSPEs are not so sensitive
to the change of m compared with the first case where we vary
n. This can be explained by the fact that the estimation error
has been accounted for in the covariance matrix described in
Figure 7. In other words, a moderate number of replications will
be sufficient to provide an accurate prediction. When the mea-
surement capability (e.g., total sizem × n) is capped, we suggest
to allocate more budget on the size of measurement sites for a
better prediction performance. Furthermore, it should be noted
that although here we only consider coordinate errors, when
small output noise exists, our model can still perform very well.
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Figure . Prediction of a curve profile: (a) prediction with noisy observations only; (b) derivative estimations from the repeated measurements; and (c) prediction with
derivative estimation. The shaded area denotes the % confidence interval band.

4.2. Case study

We applied our proposed method to model a tunnel segment.
The designed radius was 5 m along this segment. During its
construction, a preliminary scan showed that deformation
had occurred, making the real tunnel profile deviate from
the designed profile. Therefore, we would like to model the
current tunnel profile to monitor the extent of the deformation.
This experiment utilized a single TLS, which was set up at the
central axis of the segment through the registration procedure.
The TLS measured at the surface of the tunnel and recorded
the point cloud data to describe the tunnel’s profile. Due to

commercial confidentiality issues, we did not directly use the
TLS measurements. Instead, based on the TLS results, we
used finite element analysis software to reproduce the tunnel’s
surface. The reproduced data are very close to the original
data. Moreover, these data provide a continuous representation
of the tunnel’s surface and thus can better demonstrate the
objective tunnel and help validate our method in this case study.
The designed and deformed tunnel surfaces are presented
in Figure 10(a), and Figure 10(b) shows the corresponding
reading-surface. Our objective is to predict this reading-surface
based on sample measurements.

Figure . MSPE comparison when (a) site size n varies and (b) replication sizem varies.
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Figure . The tunnel segment to be modeled: (a) the designed tunnel shown in red surface and the deformed one shown in blue wire frame and (b) the corresponding
reading-surface profile.

First, we considered a simple case where the TLS measure-
ments were free from coordinate errors. This simplified case
was designed to demonstrate the effectiveness of the GP applied
on tunnel profile modeling. To reconstruct the reading-surface,
we generated a 20-point equal-distance grid as the designed
measurement coordinates. The measurements were sampled
from these coordinates and used to fit the GP model using
Equation (7). The predicted reading-surface, together with the
samples, is presented in Figure 11(b). As a comparison, we
applied the existing cylinder-fitting approach (VanGosliga et al.,
2006) to these measurements. The concept that underpins the
cylinder-fitting is to find the cylinder’s radius such that the sum-
squared error from the cylinder to these measurements is mini-
mized. The transformed reading-surface from the fitted cylinder
is shown in Figure 11(a). Obviously, the GP-predicted reading-
surface is closer to the true one shown in Figure 10(b). Similar
to Section 4.1, we quantitatively compare the prediction accu-
racy through MSPE. The MSPE for the cylinder-fitting predic-
tion is 5.93 × 10−3. We use it as the benchmark and report
the relative MSPE—i.e., the ratio of the model MSPE to this
benchmark—to present the fitting improvements. First, we see
that the relativeMSPE forGP prediction reduces to 1.58 × 10−2.
This significant improvement illustrates that the GP model is
a more flexible and accurate process to predict the tunnel’s
surface.

Second, we considered the case where coordinate error was
present and contaminated the TLS measurements. Recall that
in Equation (1) we decomposed the reading-surface profile
into the designed profile and local variability. This decompo-
sition is demonstrated in Figure 12. Specifically, in this case,
the local variability is caused by deformation. Therefore, we
refer to the surface in Figure 12(b) as the deformation pro-
file. As the designed profile is constant, modeling the reading-
surface is equivalent to modeling the deformation profile. If we
ignore the coordinate errors and simply use single-run error-
contaminated measurements to fit the GP model, the predicted
deformation surface is presented in Figure 13(a). The relative
MSPE of this prediction is 3.88 × 10−2, which is more than
twice that of the error-free case. This change clearly shows that
the coordinate errors negatively affect the prediction accuracy.
To account for this coordinate error, we took repeated measure-
ments at designed locations as proposed in Section 3. Similar to
Section 4.1, we compare two GP models. The first GP was fit-
ted using only noisy observations, whereas the latter is our pro-
posed model that combines derivative estimations. Figure 13(b)
and Figure 13(c) show the predictions from these two mod-
els. The GP with noisy observations gives a relative MSPE of
2.18 × 10−2, which implies a better accuracy than using single-
run measurements. Moreover, the relative MSPE of our pro-
posed method further decreases to 1.36 × 10−2. The relative

Figure . Comparison between cylinder-fitting and GP model: (a) cylinder-fitting prediction and (b) GP prediction.
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Figure . Decomposition of the reading-surface profile in Fig. (b): (a) the designed profile and (b) the deformation profile.

Figure . Different GP predictions when coordinate errors are present: (a) using single-run measurements; (b) using noisy observations; and (c) combining derivative
estimations.

MSPE values for all comparisons in this case study are sum-
marized in Table 1. It is interesting to note that the proposed
method has an even lower MSPE in the presence of error than
the error-free scenario. This is because with the repeated mea-
surements, the extracted derivative information brings in addi-
tional information on the surface and thus contributes to the
prediction accuracy. This advantage justifies the effectiveness of
using the proposed method.

Table . The relative MSPE comparison.

Cylinder-fitting GPmodel
Without error  1.58 × 10−2

With error Single-run Noisy observations With derivatives
3.88 × 10−2 2.18 × 10−2 1.36 × 10−2

5. Conclusion

This article presents a GP-based approach to reconstruct a
tunnel’s surface from TLS measurements. We introduce a
reading-surface profile that is uniquely transformed from a tun-
nel profile in the Cartesian coordinate system. Then we apply
the GP to model the reading-surface profile. To account for
coordinate errors, we take repeated measurements at designed
coordinates, from which we can extract mean and gradient
information of the reading-surface. The GP model is fitted
using both pieces of information, and provides a continuous
prediction of the reading-surface that can be finally transformed
into the tunnel profile. The numerical results demonstrate that
our proposed method is effective and applicable in practice.
Therefore, our method has great potential for detecting small
deformations in a tunnel’s surface.
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This work can be extended in several directions. Consider-
ing that the GPmodel is able to quantify the variance of the pre-
dicted surface, we could further incorporate statistical tests to
develop amore systematic deformationmonitoring scheme. For
example, we may monitor the GP parameters or the GP fitting
residuals. Some existing monitoring schemes for profile data in
theGP framework are discussed inWang et al. (2014) andZhang
et al. (2016). In addition, our method is currently developed
based on staticmeasurements at a certain epoch. If the TLSmea-
surements can be recorded as a time-series, we could further
consider a spatiotemporal model to capture the dynamics of the
deformation process.
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Appendix

A-I MLE for GP

Based on Equation (2), the the log-likelihood of � given ρ is

log p�(ρ) = const − 1
2
log�0 − 1

2
log(ρ0 − μ1n − r(X))T

× (�0 + �0)
−1(ρ − μ1n − r(X)),

(A1)

where x = [ϕ, θ], X = [x1, . . . , xN], and r(X) =
[r(x1), . . . , r(xN )] is the designed profile as defined earlier,
and �0 is a diagonal matrix containing the variances of mea-
surement errors. For Algorithm 1, ρ = [M1, . . . ,Mn] and
�0 = diag(S21/m1, . . . , S2n/mn). However, direct optimization
of Equation (A1) is easily trapped in local optima. To improve
the optimization performance, we can reduce the parameters’
dimension by maximizing the profile likelihood.

In particular, we note that given σ 2
f and L ≡ [lx, ly, lz], the

choice of μ̂(σ 2
f , L) that maximizes Equation (A1) can be analyt-

ically obtained as

μ̂(σ 2
f , L) = 1Tn (�0 + �0)

−1ρ

1Tn (�0 + �0)−11n
. (A2)

Subsequently, σ 2
f and L can be estimated by maximizing the

profile-likelihood (up to a constant):

log p{σ 2
f ,lx,ly,lz}(ρ|μ̂) = −1

2
log(�0 + �0)

− 1
2
log êT (�0 + �0)

−1ê, (A3)

with ê = ρ − μ̂1n − r(X). Numerical optimization methods
can be used to solve Equation (A3) simultaneously. This opti-
mization can be easier and more numerically stable since
we separate the parameter set � into two smaller sets. We
minimize Equation (A3) using scipy.optimize module in
Python.

A-II MLE for gradient-enhanced GP

For the augment data, we have

ρ̂A|� ∼ N (μ1An + rA(X),�A + �A),

with � = {μ, σ 2
f , lx, ly, lz}. Then the log-likelihood of � is

log p� (̂ρA) = const − 1
2
log�A − 1

2
log(̂ρA − μ1An

− rA(X))T (�A + �A)−1 (̂ρA − μ1An − rA(X)).

(A4)

Following the same idea as Appendix A-I, we have

μ̂(σ 2
f , L) = 1ATn (�A + �A)−1ρ̂A

1ATn (�A + �A)−11An
(A5)

and

log p{σ 2
f ,lx,ly,lz} (̂ρA|μ̂) = −1

2
log(�A + �A)

− 1
2
log êT (�A + �A)−1ê, (A6)

with ê = ρ̂A − μ̂1An − rA(X). We solve it in the same way as
Equation (A3).

A-III Expression of unbiased correction constant

The sample standard deviation S is a biased estimation of σ with
the fact that E[S] = c4σ . To derive the unbiased correction con-
stant c4, we assume the random variable X ∼ N (μ, σ 2), then
S2(n − 1)/σ 2 ∼ X 2

n−1. Let Z be distributed as X 2
n−1; hence

E[S] = σE[Z1/2]/(n − 1)1/2

= σ [2/(n − 1)]1/2�(n/2)/�[(n − 1)/2]

= c4σ,

where c4 = [2/(n − 1)]1/2�(n/2)/�[(n − 1)/2]. In addition,
we can obtain

V[S] = E[S2] − (E[S])2

= σ 2 (
1 − c24

)
.
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